{"title":"Developmental noise and phenotypic plasticity are correlated in <i>Drosophila simulans</i>.","authors":"Keita Saito, Masahito Tsuboi, Yuma Takahashi","doi":"10.1093/evlett/qrad069","DOIUrl":null,"url":null,"abstract":"<p><p>Non-genetic variation is the phenotypic variation induced by the differential expression of a genotype in response to varying environmental cues and is broadly categorized into two types: phenotypic plasticity and developmental noise. These aspects of variation have been suggested to play an important role in adaptive evolution. However, the mechanisms by which these two types of non-genetic variations influence the evolutionary process are currently poorly understood. Using a machine-learning-based phenotyping tool, we independently quantified phenotypic plasticity and developmental noise in the wing morphological traits of the fruit fly <i>Drosophila simulans.</i> Utilizing a rearing experiment, we demonstrated plastic responses in both wing size and shape as well as non-zero heritability of both phenotypic plasticity and developmental noise, which suggests that adaptive phenotypic plasticity can evolve via genetic accommodation in the wing morphology of <i>D. simulans</i>. We found a positive correlation between phenotypic plasticity and developmental noise, while the correlation between the plastic response to three kinds of environmental factors that were examined (nutrient condition, temperature, and light-dark cycle) was poor. These results suggest that phenotypic plasticity and developmental noise contribute to evolvability in a similar manner, however, the mechanisms that underlie the correspondence between these two types of variation remain to be elucidated.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrad069","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Non-genetic variation is the phenotypic variation induced by the differential expression of a genotype in response to varying environmental cues and is broadly categorized into two types: phenotypic plasticity and developmental noise. These aspects of variation have been suggested to play an important role in adaptive evolution. However, the mechanisms by which these two types of non-genetic variations influence the evolutionary process are currently poorly understood. Using a machine-learning-based phenotyping tool, we independently quantified phenotypic plasticity and developmental noise in the wing morphological traits of the fruit fly Drosophila simulans. Utilizing a rearing experiment, we demonstrated plastic responses in both wing size and shape as well as non-zero heritability of both phenotypic plasticity and developmental noise, which suggests that adaptive phenotypic plasticity can evolve via genetic accommodation in the wing morphology of D. simulans. We found a positive correlation between phenotypic plasticity and developmental noise, while the correlation between the plastic response to three kinds of environmental factors that were examined (nutrient condition, temperature, and light-dark cycle) was poor. These results suggest that phenotypic plasticity and developmental noise contribute to evolvability in a similar manner, however, the mechanisms that underlie the correspondence between these two types of variation remain to be elucidated.