{"title":"VEXAS syndrome.","authors":"Hideaki Nakajima, Hiroyoshi Kunimoto","doi":"10.1007/s12185-024-03799-9","DOIUrl":null,"url":null,"abstract":"<p><p>VEXAS syndrome is a recently identified, adult-onset autoinflammatory disease caused by somatic mutations in UBA1. UBA1 is an X-linked gene encoding E1 ubiquitin activating enzyme and its mutation in hematopoietic stem and progenitor cells leads to their clonal expansion and myeloid-skewed differentiation. UBA1 mutations in VEXAS are clustered at the second methionine (p.Met41), eliminating UBA1b isoform translated from p.Met41. Loss of UBA1b impairs ubiquitination and activates innate immune pathways, leading to systemic autoinflammation manifested as recurrent fever, chondritis, pulmonary involvement, vasculitis, or neutrophilic dermatitis. VEXAS syndrome is frequently associated with hematological disorders such as myelodysplastic syndrome (MDS), plasma cell dyscrasia and venous thromboembolism. Macrocytic anemia/macrocytosis and vacuoles in myeloid/erythroid precursors are prominent features of VEXAS syndrome, and their presence in patients with autoinflammatory symptoms prompts physicians to screen for UBA1 variant. Treatment of VEXAS syndrome is challenging and no consistently effective therapies have been established. Anti-inflammation therapies including glucocorticoids and anti-interleukin-6 have shown limited efficacy, while azacytidine and JAK inhibitors such as ruxolitinib were found to induce favorable, mid-term responses. Hematopoietic stem cell transplantation is the only curative option for VEXAS and should be considered for younger, fit patients with poor prognostic factors or recalcitrant symptoms.</p>","PeriodicalId":13992,"journal":{"name":"International Journal of Hematology","volume":" ","pages":"341-350"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12185-024-03799-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
VEXAS syndrome is a recently identified, adult-onset autoinflammatory disease caused by somatic mutations in UBA1. UBA1 is an X-linked gene encoding E1 ubiquitin activating enzyme and its mutation in hematopoietic stem and progenitor cells leads to their clonal expansion and myeloid-skewed differentiation. UBA1 mutations in VEXAS are clustered at the second methionine (p.Met41), eliminating UBA1b isoform translated from p.Met41. Loss of UBA1b impairs ubiquitination and activates innate immune pathways, leading to systemic autoinflammation manifested as recurrent fever, chondritis, pulmonary involvement, vasculitis, or neutrophilic dermatitis. VEXAS syndrome is frequently associated with hematological disorders such as myelodysplastic syndrome (MDS), plasma cell dyscrasia and venous thromboembolism. Macrocytic anemia/macrocytosis and vacuoles in myeloid/erythroid precursors are prominent features of VEXAS syndrome, and their presence in patients with autoinflammatory symptoms prompts physicians to screen for UBA1 variant. Treatment of VEXAS syndrome is challenging and no consistently effective therapies have been established. Anti-inflammation therapies including glucocorticoids and anti-interleukin-6 have shown limited efficacy, while azacytidine and JAK inhibitors such as ruxolitinib were found to induce favorable, mid-term responses. Hematopoietic stem cell transplantation is the only curative option for VEXAS and should be considered for younger, fit patients with poor prognostic factors or recalcitrant symptoms.
期刊介绍:
The International Journal of Hematology, the official journal of the Japanese Society of Hematology, has a long history of publishing leading research in hematology. The journal comprises articles that contribute to progress in research not only in basic hematology but also in clinical hematology, aiming to cover all aspects of this field, namely, erythrocytes, leukocytes and hematopoiesis, hemostasis, thrombosis and vascular biology, hematological malignancies, transplantation, and cell therapy. The expanded [Progress in Hematology] section integrates such relevant fields as the cell biology of stem cells and cancer cells, and clinical research in inflammation, cancer, and thrombosis. Reports on results of clinical trials are also included, thus contributing to the aim of fostering communication among researchers in the growing field of modern hematology. The journal provides the best of up-to-date information on modern hematology, presenting readers with high-impact, original work focusing on pivotal issues.