Rafael Núñez, Inmaculada Doña, José Antonio Cornejo-García
{"title":"Predictive models and applicability of artificial intelligence-based approaches in drug allergy.","authors":"Rafael Núñez, Inmaculada Doña, José Antonio Cornejo-García","doi":"10.1097/ACI.0000000000001002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Drug allergy is responsible for a huge burden on public healthcare systems, representing in some instances a threat for patient's life. Diagnosis is complex due to the heterogeneity of clinical phenotypes and mechanisms involved, the limitations of in vitro tests, and the associated risk to in vivo tests. Predictive models, including those using recent advances in artificial intelligence, may circumvent these drawbacks, leading to an appropriate classification of patients and improving their management in clinical settings.</p><p><strong>Recent findings: </strong>Scores and predictive models to assess drug allergy development, including patient risk stratification, are scarce and usually apply logistic regression analysis. Over recent years, different methods encompassed under the general umbrella of artificial intelligence, including machine and deep learning, and artificial neural networks, are emerging as powerful tools to provide reliable and optimal models for clinical diagnosis, prediction, and precision medicine in different types of drug allergy.</p><p><strong>Summary: </strong>This review provides general concepts and current evidence supporting the potential utility of predictive models and artificial intelligence branches in drug allergy diagnosis.</p>","PeriodicalId":10956,"journal":{"name":"Current Opinion in Allergy and Clinical Immunology","volume":" ","pages":"189-194"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Allergy and Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ACI.0000000000001002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Drug allergy is responsible for a huge burden on public healthcare systems, representing in some instances a threat for patient's life. Diagnosis is complex due to the heterogeneity of clinical phenotypes and mechanisms involved, the limitations of in vitro tests, and the associated risk to in vivo tests. Predictive models, including those using recent advances in artificial intelligence, may circumvent these drawbacks, leading to an appropriate classification of patients and improving their management in clinical settings.
Recent findings: Scores and predictive models to assess drug allergy development, including patient risk stratification, are scarce and usually apply logistic regression analysis. Over recent years, different methods encompassed under the general umbrella of artificial intelligence, including machine and deep learning, and artificial neural networks, are emerging as powerful tools to provide reliable and optimal models for clinical diagnosis, prediction, and precision medicine in different types of drug allergy.
Summary: This review provides general concepts and current evidence supporting the potential utility of predictive models and artificial intelligence branches in drug allergy diagnosis.
期刊介绍:
This reader-friendly, bimonthly resource provides a powerful, broad-based perspective on the most important advances from throughout the world literature. Featuring renowned guest editors and focusing exclusively on one to three topics, every issue of Current Opinion in Allergy and Clinical Immunology delivers unvarnished, expert assessments of developments from the previous year. Insightful editorials and on-the-mark invited reviews cover key subjects such as upper airway disease; mechanisms of allergy and adult asthma; paediatric asthma and development of atopy; food and drug allergies; and immunotherapy.