Neutron spin echo shows pHLIP is capable of retarding membrane thickness fluctuations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Haden L. Scott , Violeta Burns-Casamayor , Andrew C. Dixson , Robert F. Standaert , Christopher B. Stanley , Laura-Roxana Stingaciu , Jan-Michael Y. Carrillo , Bobby G. Sumpter , John Katsaras , Wei Qiang , Frederick A. Heberle , Blake Mertz , Rana Ashkar , Francisco N. Barrera
{"title":"Neutron spin echo shows pHLIP is capable of retarding membrane thickness fluctuations","authors":"Haden L. Scott ,&nbsp;Violeta Burns-Casamayor ,&nbsp;Andrew C. Dixson ,&nbsp;Robert F. Standaert ,&nbsp;Christopher B. Stanley ,&nbsp;Laura-Roxana Stingaciu ,&nbsp;Jan-Michael Y. Carrillo ,&nbsp;Bobby G. Sumpter ,&nbsp;John Katsaras ,&nbsp;Wei Qiang ,&nbsp;Frederick A. Heberle ,&nbsp;Blake Mertz ,&nbsp;Rana Ashkar ,&nbsp;Francisco N. Barrera","doi":"10.1016/j.bbamem.2024.184349","DOIUrl":null,"url":null,"abstract":"<div><p>Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624000804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.

Abstract Image

中子自旋回波显示,pHLIP 能够延缓膜厚度波动。
细胞膜负责一系列需要脂质和蛋白质相互作用的生物过程。虽然人们对脂质对蛋白质的影响有了更深入的了解,但我们对蛋白质构象变化如何影响膜动力学的了解仍然很有限。在这里,我们通过实验和计算机模拟研究了脂膜对 pH 低插入肽(pHLIP)构象变化的动态响应,pHLIP 在酸性条件下会从中性 pH 下的表面相关(SA)状态转变为跨膜(TM)α-螺旋。我们的研究结果表明,由于有效膜粘度的增加,TM-pHLIP 能显著减缓膜厚度的波动。我们的研究结果表明了一种可能的膜调节机制,即 TM 螺旋影响脂质尾部构象,进而改变膜的波动和粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信