Christian Calderon, Autreen Golzar, Stephen Marcott, Kyle Gifford, Sandy Napel, Dominik Fleischmann, Fred M Baik, Thomas F Osborne, Andrey Finegersh, Davud Sirjani
{"title":"3D Printing for the Development of Palatal Defect Prosthetics.","authors":"Christian Calderon, Autreen Golzar, Stephen Marcott, Kyle Gifford, Sandy Napel, Dominik Fleischmann, Fred M Baik, Thomas F Osborne, Andrey Finegersh, Davud Sirjani","doi":"10.12788/fp.0464","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Three-dimensional (3D) printing has emerged as a promising new technology for the development of surgical prosthetics. Research in orthopedic surgery has demonstrated that using 3D printed customized prosthetics results in more precise implant placements and better patient outcomes. However, there has been little research on implementing customized 3D printed prosthetics in otolaryngology. The program sought to determine whether computed tomography (CT) serves as feasible templates to construct 3D printed palatal obturator prosthetics for defects in patients who have been treated for head and neck cancers.</p><p><strong>Observations: </strong>A retrospective review of patients with palatal defects was conducted and identified 1 patient with high quality CTs compatible with 3D modeling. CTs of the patient's craniofacial anatomy were used to develop a 3D model and a Formlabs 3B+ printer printed the palatal prosthetic. We successfully developed and produced an individualized prosthetic using CTs from a veteran with head and neck deformities caused by cancer treatment who was previously treated at the Veterans Affairs Palo Alto Health Care System. This project was successful in printing patient-specific implants using CT reproductions of the patient's craniofacial anatomy, particularly of the palate. The program was a proof of concept and the implant we created was not used on the patient.</p><p><strong>Conclusions: </strong>Customized 3D printed implants may allow otolaryngologists to enhance the performance and efficiency of surgeries and better rehabilitate and reconstruct craniofacial deformities to restore appearance and function to patients. Additional research will strive to enhance the therapeutic potential of these prosthetics to serve as low-cost, patient-specific implants.</p>","PeriodicalId":94009,"journal":{"name":"Federal practitioner : for the health care professionals of the VA, DoD, and PHS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federal practitioner : for the health care professionals of the VA, DoD, and PHS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12788/fp.0464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Three-dimensional (3D) printing has emerged as a promising new technology for the development of surgical prosthetics. Research in orthopedic surgery has demonstrated that using 3D printed customized prosthetics results in more precise implant placements and better patient outcomes. However, there has been little research on implementing customized 3D printed prosthetics in otolaryngology. The program sought to determine whether computed tomography (CT) serves as feasible templates to construct 3D printed palatal obturator prosthetics for defects in patients who have been treated for head and neck cancers.
Observations: A retrospective review of patients with palatal defects was conducted and identified 1 patient with high quality CTs compatible with 3D modeling. CTs of the patient's craniofacial anatomy were used to develop a 3D model and a Formlabs 3B+ printer printed the palatal prosthetic. We successfully developed and produced an individualized prosthetic using CTs from a veteran with head and neck deformities caused by cancer treatment who was previously treated at the Veterans Affairs Palo Alto Health Care System. This project was successful in printing patient-specific implants using CT reproductions of the patient's craniofacial anatomy, particularly of the palate. The program was a proof of concept and the implant we created was not used on the patient.
Conclusions: Customized 3D printed implants may allow otolaryngologists to enhance the performance and efficiency of surgeries and better rehabilitate and reconstruct craniofacial deformities to restore appearance and function to patients. Additional research will strive to enhance the therapeutic potential of these prosthetics to serve as low-cost, patient-specific implants.