Wei Mao, Tao Zhou, Feng Zhang, Maoxiang Qian, Jianqiang Xie, Zhengyan Li, Yang Shu, Yuan Li, Heng Xu
{"title":"Pan-cancer single-cell landscape of drug-metabolizing enzyme genes.","authors":"Wei Mao, Tao Zhou, Feng Zhang, Maoxiang Qian, Jianqiang Xie, Zhengyan Li, Yang Shu, Yuan Li, Heng Xu","doi":"10.1097/FPC.0000000000000538","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Varied expression of drug-metabolizing enzymes (DME) genes dictates the intensity and duration of drug response in cancer treatment. This study aimed to investigate the transcriptional profile of DMEs in tumor microenvironment (TME) at single-cell level and their impact on individual responses to anticancer therapy.</p><p><strong>Methods: </strong>Over 1.3 million cells from 481 normal/tumor samples across 9 solid cancer types were integrated to profile changes in the expression of DME genes. A ridge regression model based on the PRISM database was constructed to predict the influence of DME gene expression on drug sensitivity.</p><p><strong>Results: </strong>Distinct expression patterns of DME genes were revealed at single-cell resolution across different cancer types. Several DME genes were highly enriched in epithelial cells (e.g. GPX2, TST and CYP3A5 ) or different TME components (e.g. CYP4F3 in monocytes). Particularly, GPX2 and TST were differentially expressed in epithelial cells from tumor samples compared to those from normal samples. Utilizing the PRISM database, we found that elevated expression of GPX2, CYP3A5 and reduced expression of TST was linked to enhanced sensitivity of particular chemo-drugs (e.g. gemcitabine, daunorubicin, dasatinib, vincristine, paclitaxel and oxaliplatin).</p><p><strong>Conclusion: </strong>Our findings underscore the varied expression pattern of DME genes in cancer cells and TME components, highlighting their potential as biomarkers for selecting appropriate chemotherapy agents.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"217-225"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000538","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Varied expression of drug-metabolizing enzymes (DME) genes dictates the intensity and duration of drug response in cancer treatment. This study aimed to investigate the transcriptional profile of DMEs in tumor microenvironment (TME) at single-cell level and their impact on individual responses to anticancer therapy.
Methods: Over 1.3 million cells from 481 normal/tumor samples across 9 solid cancer types were integrated to profile changes in the expression of DME genes. A ridge regression model based on the PRISM database was constructed to predict the influence of DME gene expression on drug sensitivity.
Results: Distinct expression patterns of DME genes were revealed at single-cell resolution across different cancer types. Several DME genes were highly enriched in epithelial cells (e.g. GPX2, TST and CYP3A5 ) or different TME components (e.g. CYP4F3 in monocytes). Particularly, GPX2 and TST were differentially expressed in epithelial cells from tumor samples compared to those from normal samples. Utilizing the PRISM database, we found that elevated expression of GPX2, CYP3A5 and reduced expression of TST was linked to enhanced sensitivity of particular chemo-drugs (e.g. gemcitabine, daunorubicin, dasatinib, vincristine, paclitaxel and oxaliplatin).
Conclusion: Our findings underscore the varied expression pattern of DME genes in cancer cells and TME components, highlighting their potential as biomarkers for selecting appropriate chemotherapy agents.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.