Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation

Adeline Samson, Massimiliano Tamborrino, Irene Tubikanec
{"title":"Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation","authors":"Adeline Samson, Massimiliano Tamborrino, Irene Tubikanec","doi":"arxiv-2405.17972","DOIUrl":null,"url":null,"abstract":"The stochastic FitzHugh-Nagumo (FHN) model considered here is a\ntwo-dimensional nonlinear stochastic differential equation with additive\ndegenerate noise, whose first component, the only one observed, describes the\nmembrane voltage evolution of a single neuron. Due to its low dimensionality,\nits analytical and numerical tractability, and its neuronal interpretation, it\nhas been used as a case study to test the performance of different statistical\nmethods in estimating the underlying model parameters. Existing methods,\nhowever, often require complete observations, non-degeneracy of the noise or a\ncomplex architecture (e.g., to estimate the transition density of the process,\n\"recovering\" the unobserved second component), and they may not\n(satisfactorily) estimate all model parameters simultaneously. Moreover, these\nstudies lack real data applications for the stochastic FHN model. Here, we\ntackle all challenges (non-globally Lipschitz drift, non-explicit solution,\nlack of available transition density, degeneracy of the noise, and partial\nobservations) via an intuitive and easy-to-implement sequential Monte Carlo\napproximate Bayesian computation algorithm. The proposed method relies on a\nrecent computationally efficient and structure-preserving numerical splitting\nscheme for synthetic data generation, and on summary statistics exploiting the\nstructural properties of the process. We succeed in estimating all model\nparameters from simulated data and, more remarkably, real action potential data\nof rats. The presented novel real-data fit may broaden the scope and\ncredibility of this classic and widely used neuronal model.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.17972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic FitzHugh-Nagumo (FHN) model considered here is a two-dimensional nonlinear stochastic differential equation with additive degenerate noise, whose first component, the only one observed, describes the membrane voltage evolution of a single neuron. Due to its low dimensionality, its analytical and numerical tractability, and its neuronal interpretation, it has been used as a case study to test the performance of different statistical methods in estimating the underlying model parameters. Existing methods, however, often require complete observations, non-degeneracy of the noise or a complex architecture (e.g., to estimate the transition density of the process, "recovering" the unobserved second component), and they may not (satisfactorily) estimate all model parameters simultaneously. Moreover, these studies lack real data applications for the stochastic FHN model. Here, we tackle all challenges (non-globally Lipschitz drift, non-explicit solution, lack of available transition density, degeneracy of the noise, and partial observations) via an intuitive and easy-to-implement sequential Monte Carlo approximate Bayesian computation algorithm. The proposed method relies on a recent computationally efficient and structure-preserving numerical splitting scheme for synthetic data generation, and on summary statistics exploiting the structural properties of the process. We succeed in estimating all model parameters from simulated data and, more remarkably, real action potential data of rats. The presented novel real-data fit may broaden the scope and credibility of this classic and widely used neuronal model.
通过近似贝叶斯计算从真实动作电位数据推断随机菲茨休-纳古莫模型
本文所考虑的随机菲茨休-纳古莫(FHN)模型是一个二维非线性随机微分方程,带有附加生成噪声,其第一个分量(唯一观测到的分量)描述了单个神经元的膜电压演变。由于其维度低、分析和数值上的可操作性以及对神经元的解释,该方程被用作案例研究,以测试不同统计方法在估计基础模型参数方面的性能。然而,现有方法往往需要完整的观测数据、噪声的非退化性或复杂的结构(例如,估计过程的过渡密度,"恢复 "未观测到的第二分量),而且它们可能无法(令人满意地)同时估计所有模型参数。此外,这些研究缺乏随机 FHN 模型的实际数据应用。在此,我们通过一种直观且易于实现的顺序蒙特卡洛近似贝叶斯计算算法,解决了所有难题(非全局 Lipschitz 漂移、非显式解、缺乏可用的过渡密度、噪声退化和部分观测)。所提出的方法依赖于新近提出的计算高效、结构保留的数值分裂方案来生成合成数据,并依赖于利用过程结构特性的汇总统计。我们成功地从模拟数据和大鼠的真实动作电位数据中估算出了所有模型参数。所提出的新颖的真实数据拟合方法可能会扩大这一经典和广泛应用的神经元模型的范围和可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信