Uniform syndeticity in multiple recurrence

Pub Date : 2024-05-28 DOI:10.1017/etds.2024.40
ASGAR JAMNESHAN, MINGHAO PAN
{"title":"Uniform syndeticity in multiple recurrence","authors":"ASGAR JAMNESHAN, MINGHAO PAN","doi":"10.1017/etds.2024.40","DOIUrl":null,"url":null,"abstract":"The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline1.png\"/> <jats:tex-math> $d,l\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline2.png\"/> <jats:tex-math> $\\varepsilon&gt; 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove the existence of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline3.png\"/> <jats:tex-math> $\\delta&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline4.png\"/> <jats:tex-math> $K\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (dependent only on <jats:italic>d</jats:italic>, <jats:italic>l</jats:italic>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline5.png\"/> <jats:tex-math> $\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) such that the following holds: Consider a solvable group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline6.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of derived length <jats:italic>l</jats:italic>, a probability space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline7.png\"/> <jats:tex-math> $(X, \\mu )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:italic>d</jats:italic> pairwise commuting measure-preserving <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline8.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-actions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline9.png\"/> <jats:tex-math> $T_1, \\ldots , T_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline10.png\"/> <jats:tex-math> $(X, \\mu )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:italic>E</jats:italic> be a measurable set in <jats:italic>X</jats:italic> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline11.png\"/> <jats:tex-math> $\\mu (E) \\geq \\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then, <jats:italic>K</jats:italic> many (left) translates of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_eqnu1.png\"/> <jats:tex-math> $$ \\begin{align*} \\big\\{\\gamma\\in\\Gamma\\colon \\mu(T_1^{\\gamma^{-1}}(E)\\cap T_2^{\\gamma^{-1}} \\circ T^{\\gamma^{-1}}_1(E)\\cap \\cdots \\cap T^{\\gamma^{-1}}_d\\circ T^{\\gamma^{-1}}_{d-1}\\circ \\cdots \\circ T^{\\gamma^{-1}}_1(E))\\geq \\delta \\big\\} \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula>cover <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline12.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline13.png\"/> <jats:tex-math> $d,l\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline14.png\"/> <jats:tex-math> $\\varepsilon&gt; 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline15.png\"/> <jats:tex-math> $\\delta&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline16.png\"/> <jats:tex-math> $K\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (dependent only on <jats:italic>d</jats:italic>, <jats:italic>l</jats:italic>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline17.png\"/> <jats:tex-math> $\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) such that for all finite solvable groups <jats:italic>G</jats:italic> of derived length <jats:italic>l</jats:italic> and any subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline18.png\"/> <jats:tex-math> $E\\subset G^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline19.png\"/> <jats:tex-math> $m^{\\otimes d}(E)\\geq \\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (where <jats:italic>m</jats:italic> is the uniform measure on <jats:italic>G</jats:italic>), we have that <jats:italic>K</jats:italic>-many (left) translates of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_eqnu2.png\"/> <jats:tex-math> $$ \\begin{align*} \\{g\\in G\\colon &amp;m^{\\otimes d}(\\{(a_1,\\ldots,a_n)\\in G^d\\colon \\\\ &amp; (a_1,\\ldots,a_n),(ga_1,a_2,\\ldots,a_n),\\ldots,(ga_1,ga_2,\\ldots, ga_n)\\in E\\})\\geq \\delta \\} \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula>cover <jats:italic>G</jats:italic>. The proof of our main result is a consequence of an ultralimit version of Austin’s amenable ergodic Szeméredi theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers $d,l\geq 1$ and any $\varepsilon> 0$ , we prove the existence of $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $ ) such that the following holds: Consider a solvable group $\Gamma $ of derived length l, a probability space $(X, \mu )$ , and d pairwise commuting measure-preserving $\Gamma $ -actions $T_1, \ldots , T_d$ on $(X, \mu )$ . Let E be a measurable set in X with $\mu (E) \geq \varepsilon $ . Then, K many (left) translates of $$ \begin{align*} \big\{\gamma\in\Gamma\colon \mu(T_1^{\gamma^{-1}}(E)\cap T_2^{\gamma^{-1}} \circ T^{\gamma^{-1}}_1(E)\cap \cdots \cap T^{\gamma^{-1}}_d\circ T^{\gamma^{-1}}_{d-1}\circ \cdots \circ T^{\gamma^{-1}}_1(E))\geq \delta \big\} \end{align*} $$ cover $\Gamma $ . This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers $d,l\geq 1$ and any $\varepsilon> 0$ , there are $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $ ) such that for all finite solvable groups G of derived length l and any subset $E\subset G^d$ with $m^{\otimes d}(E)\geq \varepsilon $ (where m is the uniform measure on G), we have that K-many (left) translates of $$ \begin{align*} \{g\in G\colon &m^{\otimes d}(\{(a_1,\ldots,a_n)\in G^d\colon \\ & (a_1,\ldots,a_n),(ga_1,a_2,\ldots,a_n),\ldots,(ga_1,ga_2,\ldots, ga_n)\in E\})\geq \delta \} \end{align*} $$ cover G. The proof of our main result is a consequence of an ultralimit version of Austin’s amenable ergodic Szeméredi theorem.
分享
查看原文
多发性复发的均匀联合性
本文的主要定理建立了关于概率空间上保度作用的多重递归的统一联合性结果。更确切地说,对于任意整数 $d,l\geq 1$ 和任意 $\varepsilon> 0$,我们证明了 $delta>0$ 和 $K\geq 1$ 的存在(仅依赖于 d、l 和 $\varepsilon $),使得以下条件成立:考虑一个派生长度为 l 的可解群 $\Gamma $,一个概率空间 $(X, \mu )$ ,以及在 $(X, \mu )$ 上的 d 个成对的保持度量的 $\Gamma $ 作用 $T_1, \ldots , T_d$ 。让 E 是 X 中的一个可测集合,$\mu (E) \geq \varepsilon $ 。那么,K 是 $$ (begin{align*})的许多(左)平移。\big\{\gamma\in\Gamma\colon \mu(T_1^{\gamma^{-1}}(E)\cap T_2^{\gamma^{-1}}\ccirc T^{\gamma^{-1}}_1(E)\cap \cdots \cap T^{\gamma^{-1}}_d\circ T^{\gamma^{-1}}_{d-1}}\circ \cdots \circ T^{\gamma^{-1}}_1(E))\geq \delta \big\}\end{align*}$$ cover $\Gamma $ 。这一结果扩展并完善了 Furstenberg 和 Katznelson 的均匀性结果。作为组合应用,我们得到了下面的均匀性结果。对于任意整数 $d,l\geq 1$ 和任意 $\varepsilon> 0$,有 $\delta>;0$和 $K\geq 1$(仅依赖于 d、l 和 $\varepsilon $),这样对于派生长度为 l 的所有有限可解群 G 和任何具有 $m^{\otimes d}(E)\geq \varepsilon $ 的子集 $E\subset G^d$ (其中 m 是 G 上的均匀量),我们有 $$ \begin{align*} 的 K-many(左)平移。\(g\in G\colon &m^{otimes d}(\{(a_1,\ldots,a_n)\in G^d\colon\ & (a_1,\ldots,a_n),(ga_1,a_2,\ldots,a_n),\ldots,(ga_1,ga_2,\ldots, ga_n)\in E\})\geq \delta \}\end{align*}我们主要结果的证明是奥斯汀的可变遍历 Szeméredi 定理的超极限版本的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信