{"title":"Uniform syndeticity in multiple recurrence","authors":"ASGAR JAMNESHAN, MINGHAO PAN","doi":"10.1017/etds.2024.40","DOIUrl":null,"url":null,"abstract":"The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline1.png\"/> <jats:tex-math> $d,l\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline2.png\"/> <jats:tex-math> $\\varepsilon> 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove the existence of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline3.png\"/> <jats:tex-math> $\\delta>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline4.png\"/> <jats:tex-math> $K\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (dependent only on <jats:italic>d</jats:italic>, <jats:italic>l</jats:italic>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline5.png\"/> <jats:tex-math> $\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) such that the following holds: Consider a solvable group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline6.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of derived length <jats:italic>l</jats:italic>, a probability space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline7.png\"/> <jats:tex-math> $(X, \\mu )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:italic>d</jats:italic> pairwise commuting measure-preserving <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline8.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-actions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline9.png\"/> <jats:tex-math> $T_1, \\ldots , T_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline10.png\"/> <jats:tex-math> $(X, \\mu )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:italic>E</jats:italic> be a measurable set in <jats:italic>X</jats:italic> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline11.png\"/> <jats:tex-math> $\\mu (E) \\geq \\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then, <jats:italic>K</jats:italic> many (left) translates of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_eqnu1.png\"/> <jats:tex-math> $$ \\begin{align*} \\big\\{\\gamma\\in\\Gamma\\colon \\mu(T_1^{\\gamma^{-1}}(E)\\cap T_2^{\\gamma^{-1}} \\circ T^{\\gamma^{-1}}_1(E)\\cap \\cdots \\cap T^{\\gamma^{-1}}_d\\circ T^{\\gamma^{-1}}_{d-1}\\circ \\cdots \\circ T^{\\gamma^{-1}}_1(E))\\geq \\delta \\big\\} \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula>cover <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline12.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline13.png\"/> <jats:tex-math> $d,l\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline14.png\"/> <jats:tex-math> $\\varepsilon> 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline15.png\"/> <jats:tex-math> $\\delta>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline16.png\"/> <jats:tex-math> $K\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (dependent only on <jats:italic>d</jats:italic>, <jats:italic>l</jats:italic>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline17.png\"/> <jats:tex-math> $\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) such that for all finite solvable groups <jats:italic>G</jats:italic> of derived length <jats:italic>l</jats:italic> and any subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline18.png\"/> <jats:tex-math> $E\\subset G^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_inline19.png\"/> <jats:tex-math> $m^{\\otimes d}(E)\\geq \\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (where <jats:italic>m</jats:italic> is the uniform measure on <jats:italic>G</jats:italic>), we have that <jats:italic>K</jats:italic>-many (left) translates of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000403_eqnu2.png\"/> <jats:tex-math> $$ \\begin{align*} \\{g\\in G\\colon &m^{\\otimes d}(\\{(a_1,\\ldots,a_n)\\in G^d\\colon \\\\ & (a_1,\\ldots,a_n),(ga_1,a_2,\\ldots,a_n),\\ldots,(ga_1,ga_2,\\ldots, ga_n)\\in E\\})\\geq \\delta \\} \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula>cover <jats:italic>G</jats:italic>. The proof of our main result is a consequence of an ultralimit version of Austin’s amenable ergodic Szeméredi theorem.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.40","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers $d,l\geq 1$ and any $\varepsilon> 0$ , we prove the existence of $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $ ) such that the following holds: Consider a solvable group $\Gamma $ of derived length l, a probability space $(X, \mu )$ , and d pairwise commuting measure-preserving $\Gamma $ -actions $T_1, \ldots , T_d$ on $(X, \mu )$ . Let E be a measurable set in X with $\mu (E) \geq \varepsilon $ . Then, K many (left) translates of $$ \begin{align*} \big\{\gamma\in\Gamma\colon \mu(T_1^{\gamma^{-1}}(E)\cap T_2^{\gamma^{-1}} \circ T^{\gamma^{-1}}_1(E)\cap \cdots \cap T^{\gamma^{-1}}_d\circ T^{\gamma^{-1}}_{d-1}\circ \cdots \circ T^{\gamma^{-1}}_1(E))\geq \delta \big\} \end{align*} $$ cover $\Gamma $ . This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers $d,l\geq 1$ and any $\varepsilon> 0$ , there are $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $ ) such that for all finite solvable groups G of derived length l and any subset $E\subset G^d$ with $m^{\otimes d}(E)\geq \varepsilon $ (where m is the uniform measure on G), we have that K-many (left) translates of $$ \begin{align*} \{g\in G\colon &m^{\otimes d}(\{(a_1,\ldots,a_n)\in G^d\colon \\ & (a_1,\ldots,a_n),(ga_1,a_2,\ldots,a_n),\ldots,(ga_1,ga_2,\ldots, ga_n)\in E\})\geq \delta \} \end{align*} $$ cover G. The proof of our main result is a consequence of an ultralimit version of Austin’s amenable ergodic Szeméredi theorem.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.