Black-Box Testing and Auditing of Bias in ADM Systems

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tobias D. Krafft, Marc P. Hauer, Katharina Zweig
{"title":"Black-Box Testing and Auditing of Bias in ADM Systems","authors":"Tobias D. Krafft, Marc P. Hauer, Katharina Zweig","doi":"10.1007/s11023-024-09666-0","DOIUrl":null,"url":null,"abstract":"<p>For years, the number of opaque algorithmic decision-making systems (ADM systems) with a large impact on society has been increasing: e.g., systems that compute decisions about future recidivism of criminals, credit worthiness, or the many small decision computing systems within social networks that create rankings, provide recommendations, or filter content. Concerns that such a system makes biased decisions can be difficult to investigate: be it by people affected, NGOs, stakeholders, governmental testing and auditing authorities, or other external parties. Scientific testing and auditing literature rarely focuses on the specific needs for such investigations and suffers from ambiguous terminologies. With this paper, we aim to support this investigation process by collecting, explaining, and categorizing methods of testing for bias, which are applicable to black-box systems, given that inputs and respective outputs can be observed. For this purpose, we provide a taxonomy that can be used to select suitable test methods adapted to the respective situation. This taxonomy takes multiple aspects into account, for example the effort to implement a given test method, its technical requirement (such as the need of ground truth) and social constraints of the investigation, e.g., the protection of business secrets. Furthermore, we analyze which test method can be used in the context of which black box audit concept. It turns out that various factors, such as the type of black box audit or the lack of an oracle, may limit the selection of applicable tests. With the help of this paper, people or organizations who want to test an ADM system for bias can identify which test methods and auditing concepts are applicable and what implications they entail.</p>","PeriodicalId":51133,"journal":{"name":"Minds and Machines","volume":"13 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minds and Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11023-024-09666-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

For years, the number of opaque algorithmic decision-making systems (ADM systems) with a large impact on society has been increasing: e.g., systems that compute decisions about future recidivism of criminals, credit worthiness, or the many small decision computing systems within social networks that create rankings, provide recommendations, or filter content. Concerns that such a system makes biased decisions can be difficult to investigate: be it by people affected, NGOs, stakeholders, governmental testing and auditing authorities, or other external parties. Scientific testing and auditing literature rarely focuses on the specific needs for such investigations and suffers from ambiguous terminologies. With this paper, we aim to support this investigation process by collecting, explaining, and categorizing methods of testing for bias, which are applicable to black-box systems, given that inputs and respective outputs can be observed. For this purpose, we provide a taxonomy that can be used to select suitable test methods adapted to the respective situation. This taxonomy takes multiple aspects into account, for example the effort to implement a given test method, its technical requirement (such as the need of ground truth) and social constraints of the investigation, e.g., the protection of business secrets. Furthermore, we analyze which test method can be used in the context of which black box audit concept. It turns out that various factors, such as the type of black box audit or the lack of an oracle, may limit the selection of applicable tests. With the help of this paper, people or organizations who want to test an ADM system for bias can identify which test methods and auditing concepts are applicable and what implications they entail.

Abstract Image

ADM 系统中的黑盒测试和偏差审计
多年来,对社会产生巨大影响的不透明算法决策系统(ADM 系统)的数量一直在增加:例如,计算决定罪犯未来累犯、信用价值的系统,或社交网络中创建排名、提供推荐或过滤内容的许多小型决策计算系统。无论是受影响的人、非政府组织、利益相关者、政府测试和审计机构,还是其他外部方,都很难对此类系统做出有偏见决策的担忧进行调查。科学测试和审核文献很少关注此类调查的具体需求,而且术语含糊不清。本文旨在通过收集、解释和分类适用于黑盒系统的偏差测试方法,为调查过程提供支持。为此,我们提供了一个分类法,可用于选择适合各自情况的测试方法。该分类法考虑了多个方面,例如实施特定测试方法的工作量、技术要求(如对地面实况的需求)和调查的社会限制(如商业机密的保护)。此外,我们还分析了哪种测试方法可用于哪种黑盒审计概念。结果发现,黑盒审计的类型或缺乏甲骨文等各种因素可能会限制适用测试的选择。在本文的帮助下,想要测试 ADM 系统是否存在偏差的人员或组织可以确定哪些测试方法和审计概念是适用的,以及它们会带来哪些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Minds and Machines
Minds and Machines 工程技术-计算机:人工智能
CiteScore
12.60
自引率
2.70%
发文量
30
审稿时长
>12 weeks
期刊介绍: Minds and Machines, affiliated with the Society for Machines and Mentality, serves as a platform for fostering critical dialogue between the AI and philosophical communities. With a focus on problems of shared interest, the journal actively encourages discussions on the philosophical aspects of computer science. Offering a global forum, Minds and Machines provides a space to debate and explore important and contentious issues within its editorial focus. The journal presents special editions dedicated to specific topics, invites critical responses to previously published works, and features review essays addressing current problem scenarios. By facilitating a diverse range of perspectives, Minds and Machines encourages a reevaluation of the status quo and the development of new insights. Through this collaborative approach, the journal aims to bridge the gap between AI and philosophy, fostering a tradition of critique and ensuring these fields remain connected and relevant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信