Life-span of solutions for a nonlinear parabolic system

Slim Tayachi
{"title":"Life-span of solutions for a nonlinear parabolic system","authors":"Slim Tayachi","doi":"10.1007/s00030-024-00952-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we establish new and optimal estimates for the existence time of the maximal solutions to the nonlinear parabolic system <span>\\(\\partial _t u=\\Delta u+|v|^{p-1} v,\\; \\partial _t v=\\Delta v+|u|^{q-1} u,\\)</span> <span>\\(q\\ge p\\ge 1,\\; q&gt;1\\)</span> with initial values in Lebesgue or weighted Lebesgue spaces. The lower-bound estimates hold without any restriction on the sign or the size of the components of the initial data. To prove the upper-bound estimates, necessary conditions for the existence of nonnegative solutions are established. These necessary conditions allow us to give new sufficient conditions for finite time blow-up with initial values having critical decay at infinity.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00952-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we establish new and optimal estimates for the existence time of the maximal solutions to the nonlinear parabolic system \(\partial _t u=\Delta u+|v|^{p-1} v,\; \partial _t v=\Delta v+|u|^{q-1} u,\) \(q\ge p\ge 1,\; q>1\) with initial values in Lebesgue or weighted Lebesgue spaces. The lower-bound estimates hold without any restriction on the sign or the size of the components of the initial data. To prove the upper-bound estimates, necessary conditions for the existence of nonnegative solutions are established. These necessary conditions allow us to give new sufficient conditions for finite time blow-up with initial values having critical decay at infinity.

非线性抛物线系统解的寿命期
在本文中,我们建立了非线性抛物线系统 \(\partial _t u=\Delta u+|v|^{p-1} v,\; \partial _t v=\Delta v+|u|^{q-1} u,\) \(q\ge p\ge 1,\; q>1\)的最大解存在时间的新的最优估计,该系统的初值在 Lebesgue 或加权 Lebesgue 空间中。下限估计成立,对初始数据成分的符号或大小没有任何限制。为了证明上限估计,我们建立了非负解存在的必要条件。通过这些必要条件,我们给出了有限时间爆炸的新充分条件,其初始值在无穷大处有临界衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信