Zhan Shu, Ao Wu, Yuning Si, Hanlin Dong, Dejiang Wang, Yifan Li
{"title":"Automated identification of steel weld defects, a convolutional neural network improved machine learning approach","authors":"Zhan Shu, Ao Wu, Yuning Si, Hanlin Dong, Dejiang Wang, Yifan Li","doi":"10.1007/s11709-024-1045-7","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a machine-learning-based methodology to automatically classify different types of steel weld defects, including lack of the fusion, porosity, slag inclusion, and the qualified (no defects) cases. This methodology solves the shortcomings of existing detection methods, such as expensive equipment, complicated operation and inability to detect internal defects. The study first collected percussed data from welded steel members with or without weld defects. Then, three methods, the Mel frequency cepstral coefficients, short-time Fourier transform (STFT), and continuous wavelet transform were implemented and compared to explore the most appropriate features for classification of weld statuses. Classic and convolutional neural network-enhanced algorithms were used to classify, the extracted features. Furthermore, experiments were designed and performed to validate the proposed method. Results showed that STFT achieved higher accuracies (up to 96.63% on average) in the weld status classification. The convolutional neural network-enhanced support vector machine (SVM) outperformed six other algorithms with an average accuracy of 95.8%. In addition, random forest and SVM were efficient approaches with a balanced trade-off between the accuracies and the computational efforts.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"96 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1045-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a machine-learning-based methodology to automatically classify different types of steel weld defects, including lack of the fusion, porosity, slag inclusion, and the qualified (no defects) cases. This methodology solves the shortcomings of existing detection methods, such as expensive equipment, complicated operation and inability to detect internal defects. The study first collected percussed data from welded steel members with or without weld defects. Then, three methods, the Mel frequency cepstral coefficients, short-time Fourier transform (STFT), and continuous wavelet transform were implemented and compared to explore the most appropriate features for classification of weld statuses. Classic and convolutional neural network-enhanced algorithms were used to classify, the extracted features. Furthermore, experiments were designed and performed to validate the proposed method. Results showed that STFT achieved higher accuracies (up to 96.63% on average) in the weld status classification. The convolutional neural network-enhanced support vector machine (SVM) outperformed six other algorithms with an average accuracy of 95.8%. In addition, random forest and SVM were efficient approaches with a balanced trade-off between the accuracies and the computational efforts.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.