Seyedmilad Komarizadehasl, Ye Xia, Mahyad Komary, Fidel Lozano
{"title":"Eigenfrequency analysis of bridges using a smartphone and a novel low-cost accelerometer prototype","authors":"Seyedmilad Komarizadehasl, Ye Xia, Mahyad Komary, Fidel Lozano","doi":"10.1007/s11709-024-1055-5","DOIUrl":null,"url":null,"abstract":"<p>Researchers are paying increasing attention to the development of low-cost and microcontroller-based accelerometers, in order to make structural health monitoring feasible for conventional bridges with limited monitoring budget. Parallel with the low-cost sensor development, the use of the embedded accelerometers of smartphones for eigenfrequency analysis of bridges is becoming popular in the civil engineering literature. This paper, for the first time in the literature, studies these two promising technologies by comparing the noise density and eigenfrequency analysis of a self-developed, validated and calibrated low-cost Internet of things based accelerometer LARA (low cost adaptable reliable accelerometer) with those of a state of the art smartphone (iPhone XR). The eigenfrequency analysis of a footbridge in San Sebastian, Spain, showed that the embedded accelerometer of the iPhone XR can measure the natural frequencies of the under study bridge.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"20 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1055-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers are paying increasing attention to the development of low-cost and microcontroller-based accelerometers, in order to make structural health monitoring feasible for conventional bridges with limited monitoring budget. Parallel with the low-cost sensor development, the use of the embedded accelerometers of smartphones for eigenfrequency analysis of bridges is becoming popular in the civil engineering literature. This paper, for the first time in the literature, studies these two promising technologies by comparing the noise density and eigenfrequency analysis of a self-developed, validated and calibrated low-cost Internet of things based accelerometer LARA (low cost adaptable reliable accelerometer) with those of a state of the art smartphone (iPhone XR). The eigenfrequency analysis of a footbridge in San Sebastian, Spain, showed that the embedded accelerometer of the iPhone XR can measure the natural frequencies of the under study bridge.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.