A probabilistic approach to continuous differentiability of optimal stopping boundaries

Tiziano De Angelis, Damien Lamberton
{"title":"A probabilistic approach to continuous differentiability of optimal stopping boundaries","authors":"Tiziano De Angelis, Damien Lamberton","doi":"arxiv-2405.16636","DOIUrl":null,"url":null,"abstract":"We obtain the first probabilistic proof of continuous differentiability of\ntime-dependent optimal boundaries in optimal stopping problems. The underlying\nstochastic dynamics is a one-dimensional, time-inhomogeneous diffusion. The\ngain function is also time-inhomogeneous and not necessarily smooth. Moreover,\nwe include state-dependent discount rate and the time-horizon can be either\nfinite or infinite. Our arguments of proof are of a local nature that allows us\nto obtain the result under more general conditions than those used in the PDE\nliterature. As a byproduct of our main result we also obtain the first\nprobabilistic proof of the link between the value function of an optimal\nstopping problem and the solution of the Stefan's problem.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain the first probabilistic proof of continuous differentiability of time-dependent optimal boundaries in optimal stopping problems. The underlying stochastic dynamics is a one-dimensional, time-inhomogeneous diffusion. The gain function is also time-inhomogeneous and not necessarily smooth. Moreover, we include state-dependent discount rate and the time-horizon can be either finite or infinite. Our arguments of proof are of a local nature that allows us to obtain the result under more general conditions than those used in the PDE literature. As a byproduct of our main result we also obtain the first probabilistic proof of the link between the value function of an optimal stopping problem and the solution of the Stefan's problem.
最优停止边界连续可微分性的概率方法
我们首次从概率上证明了最优停止问题中依赖时间的最优边界的连续可微分性。基本随机动力学是一维时间同构扩散。收益函数也是时间同构的,而且不一定是平滑的。此外,我们还包含了与状态相关的贴现率,时间跨度可以是无限大或无限小。我们的证明论据是局部性的,因此可以在比 PDE 文献中使用的条件更一般的条件下得到结果。作为主结果的副产品,我们还首次从概率论角度证明了最优停止问题的价值函数与斯特凡问题的解之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信