{"title":"Data management and selectivity in collaborative pervasive edge computing","authors":"Dimitrios Papathanasiou, Kostas Kolomvatsos","doi":"10.1007/s00607-024-01297-8","DOIUrl":null,"url":null,"abstract":"<p>Context-aware data management becomes the focus of several research efforts, which can be placed at the intersection between the Internet of Things (IoT) and Edge Computing (EC). Huge volumes of data captured by IoT devices are processed in EC environments. Even if edge nodes undertake the responsibility of data management tasks, they are characterized by limited storage and computational resources compared to Cloud. Apparently, this mobilises the introduction of intelligent data selection methods capable of deciding which of the collected data should be kept locally based on end users/applications requests. In this paper, we devise a mechanism where edge nodes learn their own data selection filters, and decide the distributed allocation of newly collected data to their peers and/or Cloud once these data are not conformed with the local data filters. Our mechanism intents to postpone final decisions on data transfer to Cloud (e.g., data centers) to pervasively keep relevant data as close and as long to end users/applications as possible. The proposed mechanism derives a data-selection map across edge nodes by learning specific data sub-spaces, which facilitate the placement of processing tasks (e.g., analytics queries). This is very critical when we target to support near real time decision making and would like to minimize all parts of the tasks allocation procedure. We evaluate and compare our approach against baselines and schemes found in the literature showcasing its applicability in pervasive edge computing environments.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"31 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01297-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Context-aware data management becomes the focus of several research efforts, which can be placed at the intersection between the Internet of Things (IoT) and Edge Computing (EC). Huge volumes of data captured by IoT devices are processed in EC environments. Even if edge nodes undertake the responsibility of data management tasks, they are characterized by limited storage and computational resources compared to Cloud. Apparently, this mobilises the introduction of intelligent data selection methods capable of deciding which of the collected data should be kept locally based on end users/applications requests. In this paper, we devise a mechanism where edge nodes learn their own data selection filters, and decide the distributed allocation of newly collected data to their peers and/or Cloud once these data are not conformed with the local data filters. Our mechanism intents to postpone final decisions on data transfer to Cloud (e.g., data centers) to pervasively keep relevant data as close and as long to end users/applications as possible. The proposed mechanism derives a data-selection map across edge nodes by learning specific data sub-spaces, which facilitate the placement of processing tasks (e.g., analytics queries). This is very critical when we target to support near real time decision making and would like to minimize all parts of the tasks allocation procedure. We evaluate and compare our approach against baselines and schemes found in the literature showcasing its applicability in pervasive edge computing environments.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.