E. G. Kuznetsova, V. A. Ryzhikova, L. A. Salomatina, O. M. Kuryleva, V. I. Sevastianov
{"title":"A Percutaneous Delivery System for a Nicotinamide Transdermal Therapeutic System","authors":"E. G. Kuznetsova, V. A. Ryzhikova, L. A. Salomatina, O. M. Kuryleva, V. I. Sevastianov","doi":"10.1134/S2075113324020291","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—A percutaneous delivery system for nicotinamide is developed and its functional properties are studied in vitro. Four compositions of the emulsion percutaneous delivery system for a nicotinamide transdermal therapeutic system (TTS) are suggested, in which the amount of the percutaneous carrier, docusate sodium, is varied. The performed studies of the diffusion of nicotinamide in vitro through unpreserved rabbit skin show that increasing the concentration of docusate sodium threefold (from 3.3 up to 9.8%) significantly increases the amount of the diffused drug substance by ~15% and decreases its residual concentration in the TTS. The amount of the antioxidant detected in the skin flap is lower than the therapeutic dose (~1.46% of its initial amount in the TTS) within 24 h after the start of the in vitro experiment, which indicates the absence of a possible aftereffect of the nicotinamide TTS in its clinical use after detaching from the patient’s skin.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324020291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract—A percutaneous delivery system for nicotinamide is developed and its functional properties are studied in vitro. Four compositions of the emulsion percutaneous delivery system for a nicotinamide transdermal therapeutic system (TTS) are suggested, in which the amount of the percutaneous carrier, docusate sodium, is varied. The performed studies of the diffusion of nicotinamide in vitro through unpreserved rabbit skin show that increasing the concentration of docusate sodium threefold (from 3.3 up to 9.8%) significantly increases the amount of the diffused drug substance by ~15% and decreases its residual concentration in the TTS. The amount of the antioxidant detected in the skin flap is lower than the therapeutic dose (~1.46% of its initial amount in the TTS) within 24 h after the start of the in vitro experiment, which indicates the absence of a possible aftereffect of the nicotinamide TTS in its clinical use after detaching from the patient’s skin.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.