Modified Memoryless Spectral-Scaling Broyden Family on Riemannian Manifolds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hiroyuki Sakai, Hideaki Iiduka
{"title":"Modified Memoryless Spectral-Scaling Broyden Family on Riemannian Manifolds","authors":"Hiroyuki Sakai, Hideaki Iiduka","doi":"10.1007/s10957-024-02449-8","DOIUrl":null,"url":null,"abstract":"<p>This paper presents modified memoryless quasi-Newton methods based on the spectral-scaling Broyden family on Riemannian manifolds. The method involves adding one parameter to the search direction of the memoryless self-scaling Broyden family on the manifold. Moreover, it uses a general map instead of vector transport. This idea has already been proposed within a general framework of Riemannian conjugate gradient methods where one can use vector transport, scaled vector transport, or an inverse retraction. We show that the search direction satisfies the sufficient descent condition under some assumptions on the parameters. In addition, we show global convergence of the proposed method under the Wolfe conditions. We numerically compare it with existing methods, including Riemannian conjugate gradient methods and the memoryless spectral-scaling Broyden family. The numerical results indicate that the proposed method with the BFGS formula is suitable for solving an off-diagonal cost function minimization problem on an oblique manifold.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02449-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents modified memoryless quasi-Newton methods based on the spectral-scaling Broyden family on Riemannian manifolds. The method involves adding one parameter to the search direction of the memoryless self-scaling Broyden family on the manifold. Moreover, it uses a general map instead of vector transport. This idea has already been proposed within a general framework of Riemannian conjugate gradient methods where one can use vector transport, scaled vector transport, or an inverse retraction. We show that the search direction satisfies the sufficient descent condition under some assumptions on the parameters. In addition, we show global convergence of the proposed method under the Wolfe conditions. We numerically compare it with existing methods, including Riemannian conjugate gradient methods and the memoryless spectral-scaling Broyden family. The numerical results indicate that the proposed method with the BFGS formula is suitable for solving an off-diagonal cost function minimization problem on an oblique manifold.

Abstract Image

黎曼曼曼体上的修正无记忆谱缩放布洛伊登家族
本文提出了基于黎曼流形上谱缩放布洛伊登族的修正无记忆准牛顿方法。该方法涉及在流形上的无记忆自缩放布洛伊登族的搜索方向上添加一个参数。此外,它使用的是一般映射而不是矢量传输。这个想法已经在黎曼共轭梯度方法的一般框架内提出,在这个框架内,我们可以使用矢量传输、缩放矢量传输或反向回缩。我们证明,在一些参数假设条件下,搜索方向满足充分下降条件。此外,我们还证明了所提出的方法在沃尔夫条件下的全局收敛性。我们将该方法与现有方法进行了数值比较,包括黎曼共轭梯度方法和无记忆谱缩放布洛伊登家族。数值结果表明,利用 BFGS 公式提出的方法适用于解决斜流形上的非对角成本函数最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信