Harmonic metrics for the Hull–Strominger system and stability

IF 0.6 4区 数学 Q3 MATHEMATICS
M. Garcia-Fernandez, R. Gonzalez Molina
{"title":"Harmonic metrics for the Hull–Strominger system and stability","authors":"M. Garcia-Fernandez, R. Gonzalez Molina","doi":"10.1142/s0129167x24410088","DOIUrl":null,"url":null,"abstract":"<p>We investigate stability conditions related to the existence of solutions of the Hull–Strominger system with prescribed balanced class. We build on recent work by the authors, where the Hull–Strominger system is recasted using non-Hermitian Yang–Mills connections and holomorphic Courant algebroids. Our main development is a notion of <i>harmonic metric</i> for the Hull–Strominger system, motivated by an infinite-dimensional hyperKähler moment map and related to a numerical stability condition, which we expect to exist for families of solutions. We illustrate our theory with an infinite number of continuous families of examples on the Iwasawa manifold.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24410088","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate stability conditions related to the existence of solutions of the Hull–Strominger system with prescribed balanced class. We build on recent work by the authors, where the Hull–Strominger system is recasted using non-Hermitian Yang–Mills connections and holomorphic Courant algebroids. Our main development is a notion of harmonic metric for the Hull–Strominger system, motivated by an infinite-dimensional hyperKähler moment map and related to a numerical stability condition, which we expect to exist for families of solutions. We illustrate our theory with an infinite number of continuous families of examples on the Iwasawa manifold.

赫尔-斯特罗明格系统的谐波度量和稳定性
我们研究了与具有规定平衡类的 Hull-Strominger 系统解的存在相关的稳定性条件。我们以作者最近的工作为基础,利用非赫米态阳-米尔斯连接和全形库朗梯形重塑了赫尔-斯特罗姆格系统。我们的主要发展是赫尔-斯特罗姆格系统的调和度量概念,这一概念由无穷维超凯勒矩图激发,并与数值稳定性条件相关,我们预计该条件将存在于解系中。我们用岩泽流形上的无限连续族实例来说明我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信