Multiplicativity of linear functionals on function spaces on an open disc

IF 0.5 4区 数学 Q3 MATHEMATICS
Jaikishan, Sneh Lata, Dinesh Singh
{"title":"Multiplicativity of linear functionals on function spaces on an open disc","authors":"Jaikishan,&nbsp;Sneh Lata,&nbsp;Dinesh Singh","doi":"10.1007/s00013-024-02002-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a fairly general version of the well-known Gleason–Kahane–<span>\\(\\dot{\\text {Z}}\\)</span>elazko (GKZ) theorem in the spirit of a GKZ type theorem obtained recently by Mashreghi and Ransford for Hardy spaces. In effect, we characterize a class of linear functionals as point evaluations on the vector space of all complex polynomials <span>\\(\\mathcal {P}\\)</span>. We do not make any topological assumptions on <span>\\(\\mathcal {P}\\)</span>. We then apply this characterization to present a version of the GKZ theorem for a vast class of topological spaces of complex-valued functions including the Hardy, Bergman, Dirichlet, and many more well-known function spaces. We obtain this result under the assumption of continuity of the linear functional, which we show, with the help of an example, to be a necessary condition for the desired conclusion. Lastly, we use the GKZ theorem for polynomials to obtain a version of the GKZ theorem for strictly cyclic weighted Hardy spaces.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02002-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a fairly general version of the well-known Gleason–Kahane–\(\dot{\text {Z}}\)elazko (GKZ) theorem in the spirit of a GKZ type theorem obtained recently by Mashreghi and Ransford for Hardy spaces. In effect, we characterize a class of linear functionals as point evaluations on the vector space of all complex polynomials \(\mathcal {P}\). We do not make any topological assumptions on \(\mathcal {P}\). We then apply this characterization to present a version of the GKZ theorem for a vast class of topological spaces of complex-valued functions including the Hardy, Bergman, Dirichlet, and many more well-known function spaces. We obtain this result under the assumption of continuity of the linear functional, which we show, with the help of an example, to be a necessary condition for the desired conclusion. Lastly, we use the GKZ theorem for polynomials to obtain a version of the GKZ theorem for strictly cyclic weighted Hardy spaces.

开放圆盘上函数空间线性函数的乘法性
本文本着马什雷吉(Mashreghi)和兰斯福德(Ransford)最近得到的哈代空间 GKZ 型定理的精神,提出了著名的格里森-卡哈内(Gleason-Kahane-\(\dot\{text {Z}}\)elazko(GKZ)定理的一个相当通用的版本。实际上,我们将一类线性函数描述为所有复多项式向量空间上的点(\mathcal {P}\)。我们不对\(\mathcal {P}\)做任何拓扑假设。然后,我们应用这一特征,为一大类复值函数拓扑空间提出了一个版本的 GKZ 定理,包括哈代、伯格曼、狄里克特和许多更著名的函数空间。我们是在线性函数连续性的假设条件下得到这一结果的,并通过一个例子证明了线性函数连续性是得到预期结论的必要条件。最后,我们利用多项式的 GKZ 定理,得到了严格循环加权哈代空间的 GKZ 定理版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信