On the heat kernel of the Rumin complex and Calderón reproducing formula

IF 0.9 3区 数学 Q2 MATHEMATICS
Paolo Ciatti, Bruno Franchi, Yannick Sire
{"title":"On the heat kernel of the Rumin complex and Calderón reproducing formula","authors":"Paolo Ciatti, Bruno Franchi, Yannick Sire","doi":"10.1515/agms-2024-0002","DOIUrl":null,"url":null,"abstract":"We derive several properties of the heat equation with the Hodge operator associated with the Rumin’s complex on Heisenberg groups and prove several properties of the fundamental solution. As an application, we use the heat kernel for Rumin’s differential forms to construct a Calderón reproducing formula on Rumin’s forms.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"66 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2024-0002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive several properties of the heat equation with the Hodge operator associated with the Rumin’s complex on Heisenberg groups and prove several properties of the fundamental solution. As an application, we use the heat kernel for Rumin’s differential forms to construct a Calderón reproducing formula on Rumin’s forms.
关于鲁明复合体的热核和卡尔德龙再现公式
我们推导了与海森堡群上鲁明复数相关的霍奇算子的热方程的几个性质,并证明了基本解的几个性质。作为应用,我们利用鲁明微分形式的热核构建了鲁明形式的卡尔德龙重现公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信