Francesco Folino, Gianluigi Folino, Francesco Sergio Pisani, Luigi Pontieri, Pietro Sabatino
{"title":"Efficiently approaching vertical federated learning by combining data reduction and conditional computation techniques","authors":"Francesco Folino, Gianluigi Folino, Francesco Sergio Pisani, Luigi Pontieri, Pietro Sabatino","doi":"10.1186/s40537-024-00933-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a framework based on a sparse Mixture of Experts (MoE) architecture is proposed for the federated learning and application of a distributed classification model in domains (like cybersecurity and healthcare) where different parties of the federation store different subsets of features for a number of data instances. The framework is designed to limit the risk of information leakage and computation/communication costs in both model training (through data sampling) and application (leveraging the conditional-computation abilities of sparse MoEs). Experiments on real data have shown the proposed approach to ensure a better balance between efficiency and model accuracy, compared to other VFL-based solutions. Notably, in a real-life cybersecurity case study focused on malware classification (the KronoDroid dataset), the proposed method surpasses competitors even though it utilizes only 50% and 75% of the training set, which is fully utilized by the other approaches in the competition. This method achieves reductions in the rate of false positives by 16.9% and 18.2%, respectively, and also delivers satisfactory results on the other evaluation metrics. These results showcase our framework’s potential to significantly enhance cybersecurity threat detection and prevention in a collaborative yet secure manner.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"23 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00933-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a framework based on a sparse Mixture of Experts (MoE) architecture is proposed for the federated learning and application of a distributed classification model in domains (like cybersecurity and healthcare) where different parties of the federation store different subsets of features for a number of data instances. The framework is designed to limit the risk of information leakage and computation/communication costs in both model training (through data sampling) and application (leveraging the conditional-computation abilities of sparse MoEs). Experiments on real data have shown the proposed approach to ensure a better balance between efficiency and model accuracy, compared to other VFL-based solutions. Notably, in a real-life cybersecurity case study focused on malware classification (the KronoDroid dataset), the proposed method surpasses competitors even though it utilizes only 50% and 75% of the training set, which is fully utilized by the other approaches in the competition. This method achieves reductions in the rate of false positives by 16.9% and 18.2%, respectively, and also delivers satisfactory results on the other evaluation metrics. These results showcase our framework’s potential to significantly enhance cybersecurity threat detection and prevention in a collaborative yet secure manner.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.