Upper Bounds for Volumes of Generalized Hyperbolic Polyhedra and Hyperbolic Links

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Yu. Vesnin, A. A. Egorov
{"title":"Upper Bounds for Volumes of Generalized Hyperbolic Polyhedra and Hyperbolic Links","authors":"A. Yu. Vesnin, A. A. Egorov","doi":"10.1134/s0037446624030042","DOIUrl":null,"url":null,"abstract":"<p>Call a polyhedron in a three-dimensional hyperbolic space\ngeneralized if finite, ideal, and truncated vertices are admitted.\nBy Belletti’s theorem of 2021 the exact upper bound for the volumes\nof generalized hyperbolic polyhedra with the same one-dimensional skeleton <span>\\( \\Gamma \\)</span>\nequals the volume of an ideal right-angled hyperbolic polyhedron\nwhose one-dimensional skeleton is the medial graph for <span>\\( \\Gamma \\)</span>.\nWe give the upper bounds for the volume of\nan arbitrary generalized hyperbolic polyhedron\nsuch that the bounds depend linearly on\nthe number of edges. Moreover, we show that the bounds can be improved\nif the polyhedron has triangular faces and trivalent vertices.\nAs application we obtain some new upper bounds for the volume\nof the complement of the hyperbolic link with more than eight twists in a diagram.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":"65 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Call a polyhedron in a three-dimensional hyperbolic space generalized if finite, ideal, and truncated vertices are admitted. By Belletti’s theorem of 2021 the exact upper bound for the volumes of generalized hyperbolic polyhedra with the same one-dimensional skeleton \( \Gamma \) equals the volume of an ideal right-angled hyperbolic polyhedron whose one-dimensional skeleton is the medial graph for \( \Gamma \). We give the upper bounds for the volume of an arbitrary generalized hyperbolic polyhedron such that the bounds depend linearly on the number of edges. Moreover, we show that the bounds can be improved if the polyhedron has triangular faces and trivalent vertices. As application we obtain some new upper bounds for the volume of the complement of the hyperbolic link with more than eight twists in a diagram.

Abstract Image

广义双曲多面体和双曲链节体积的上界
根据贝莱蒂 2021 定理,具有相同一维骨架 \( \Gamma \)的广义双曲多面体的体积的精确上限等于理想直角双曲多面体的体积,而理想直角双曲多面体的一维骨架是 \( \Gamma \)的中值图。我们给出了任意广义双曲多面体体积的上界,使得上界与边的数量成线性关系。此外,我们还证明了如果多面体具有三角形面和三价顶点,那么这些界限还可以得到改进。作为应用,我们得到了一些新的上界,即在图中具有八个以上扭曲的双曲链接的补集的体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
88
审稿时长
4-8 weeks
期刊介绍: Siberian Mathematical Journal is journal published in collaboration with the Sobolev Institute of Mathematics in Novosibirsk. The journal publishes the results of studies in various branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信