On a Generalized Mizuhara Construction

Pub Date : 2024-05-29 DOI:10.1134/s0037446624030091
A. P. Pozhidaev
{"title":"On a Generalized Mizuhara Construction","authors":"A. P. Pozhidaev","doi":"10.1134/s0037446624030091","DOIUrl":null,"url":null,"abstract":"<p>We describe the ideals for Mizuhara extensions and find\nsome necessary and sufficient conditions for the simplicity of\nthe direct Mizuhara extension.\nAlso, we study the Mizuhara construction\nfor the matrix algebra and Burde algebras.\nWe construct some various generalizations\nof the Mizuhara construction and exhibit some examples\nof the simple pre-Lie algebras that are obtained by this\nconstruction; in particular, we construct the simple Witt doubles\n<span>\\( {\\mathcal{A}}_{d} \\)</span> and <span>\\( {\\mathcal{W}}_{d}({\\mathcal{A}}) \\)</span> for a unital associative commutative\nalgebra <span>\\( {\\mathcal{A}} \\)</span> with derivation <span>\\( d \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the ideals for Mizuhara extensions and find some necessary and sufficient conditions for the simplicity of the direct Mizuhara extension. Also, we study the Mizuhara construction for the matrix algebra and Burde algebras. We construct some various generalizations of the Mizuhara construction and exhibit some examples of the simple pre-Lie algebras that are obtained by this construction; in particular, we construct the simple Witt doubles \( {\mathcal{A}}_{d} \) and \( {\mathcal{W}}_{d}({\mathcal{A}}) \) for a unital associative commutative algebra \( {\mathcal{A}} \) with derivation \( d \).

分享
查看原文
关于广义水原结构
我们描述了水原扩展的理想,并为直接水原扩展的简单性找到了一些必要条件和充分条件。此外,我们还研究了矩阵代数和布尔代数的水原构造。我们还研究了矩阵代数和布尔代数的水原构造。我们构造了水原构造的各种广义,并展示了通过这种构造得到的简单前李代数的一些例子;特别是,我们为具有派生(d)的单元关联交换代数(\( {\mathcal{A}}\) 构造了简单的维特倍数({\mathcal{W}}_{d}({\mathcal{A}}) )和({\mathcal{W}}_{d}({\mathcal{A}}) )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信