A derivation of the first generation particle masses from internal spacetime

Charlie Beil
{"title":"A derivation of the first generation particle masses from internal spacetime","authors":"Charlie Beil","doi":"arxiv-2405.15522","DOIUrl":null,"url":null,"abstract":"Internal spacetime geometry was recently introduced to model certain quantum\nphenomena using spacetime metrics that are degenerate. We use the Ricci tensors\nof these metrics to derive a ratio of the bare up and down quark masses,\nobtaining $m_u/m_d = 9604/19683 \\approx .4879$. This value is within the\nlattice QCD value at $2 \\operatorname{GeV}$ in the\n$\\overline{\\operatorname{MS}}$-scheme, $.473 \\pm .023$. Moreover, using the\nLevi-Cevita Poisson equation, we derive ratios of the dressed electron mass and\nbare quark masses. For a dressed electron mass of $.511 \\operatorname{MeV}$,\nthese ratios yield the bare quark masses $m_u \\approx 2.2440\n\\operatorname{MeV}$ and $m_d \\approx 4.599 \\operatorname{MeV}$, which are\nwithin/near the lattice QCD values $m^{\\overline{\\operatorname{MS}}}_u =\n(2.20\\pm .10) \\operatorname{MeV}$ and $m^{\\overline{\\operatorname{MS}}}_d =\n(4.69 \\pm .07) \\operatorname{MeV}$. Finally, using $4$-accelerations, we derive\nthe ratio $\\tilde{m}_u/\\tilde{m}_d = 48/49 \\approx .98$ of the constituent up\nand down quark masses. This value is within the $.97 \\sim 1$ range of\nconstituent quark models. All of the ratios we obtain are from first principles\nalone, with no free or ad hoc parameters. Furthermore, and rather curiously,\nour derivations do not use quantum field theory, but only tools from general\nrelativity.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internal spacetime geometry was recently introduced to model certain quantum phenomena using spacetime metrics that are degenerate. We use the Ricci tensors of these metrics to derive a ratio of the bare up and down quark masses, obtaining $m_u/m_d = 9604/19683 \approx .4879$. This value is within the lattice QCD value at $2 \operatorname{GeV}$ in the $\overline{\operatorname{MS}}$-scheme, $.473 \pm .023$. Moreover, using the Levi-Cevita Poisson equation, we derive ratios of the dressed electron mass and bare quark masses. For a dressed electron mass of $.511 \operatorname{MeV}$, these ratios yield the bare quark masses $m_u \approx 2.2440 \operatorname{MeV}$ and $m_d \approx 4.599 \operatorname{MeV}$, which are within/near the lattice QCD values $m^{\overline{\operatorname{MS}}}_u = (2.20\pm .10) \operatorname{MeV}$ and $m^{\overline{\operatorname{MS}}}_d = (4.69 \pm .07) \operatorname{MeV}$. Finally, using $4$-accelerations, we derive the ratio $\tilde{m}_u/\tilde{m}_d = 48/49 \approx .98$ of the constituent up and down quark masses. This value is within the $.97 \sim 1$ range of constituent quark models. All of the ratios we obtain are from first principles alone, with no free or ad hoc parameters. Furthermore, and rather curiously, our derivations do not use quantum field theory, but only tools from general relativity.
从内部时空推导第一代粒子质量
最近引入了内部时空几何,用退化的时空度量来模拟某些量子现象。我们使用这些度量的里奇张量来推导裸上下夸克质量的比值,得到 $m_u/m_d = 9604/19683 (约 .4879$)。在$overline{operatorname{MS}}$方案中,这个值在晶格QCD的$2 \operatorname{GeV}$ 值范围之内,即$.473 \pm .023$。此外,利用列维-塞维塔泊松方程,我们还推导出了着色电子质量与裸夸克质量的比值。对于掺杂电子质量为$.511 (operatorname{MeV}$时,这些比值得出裸夸克质量为$m_u (约2.2440 (operatorname{MeV}$)和$m_d (约4.599 (operatorname{MeV}$)。599 \operatorname{MeV}$,它们都在/接近于晶格QCD的值 $m^{overline\operatorname{MS}}_u =(2.20\pm .10) \operatorname{MeV}$和 $m^{overline\operatorname{MS}}_d =(4.69 \pm .07) \operatorname{MeV}$。最后,利用4元加速度,我们得出了上下夸克质量的比值$\tilde{m}_u/\tilde{m}_d = 48/49 (约0.98元)。这个值在组成夸克模型的 0.97 (sim 1)美元范围内。我们得到的所有比值都是根据第一原理得出的,没有任何自由参数或临时参数。此外,比较奇怪的是,我们的推导没有使用量子场论,而只使用了广义相对论的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信