On the x-coordinates of Pell equations that are products of two Pell numbers

Pub Date : 2024-05-28 DOI:10.1515/ms-2024-0004
Mahadi Ddamulira, Florian Luca
{"title":"On the x-coordinates of Pell equations that are products of two Pell numbers","authors":"Mahadi Ddamulira, Florian Luca","doi":"10.1515/ms-2024-0004","DOIUrl":null,"url":null,"abstract":"Let (<jats:italic>P<jats:sub>m</jats:sub> </jats:italic>)<jats:sub> <jats:italic>m</jats:italic>≥0</jats:sub> be the sequence of Pell numbers given by <jats:italic>P</jats:italic> <jats:sub>0</jats:sub> = 0, <jats:italic>P</jats:italic> <jats:sub>1</jats:sub> = 1, and <jats:italic>P</jats:italic> <jats:sub> <jats:italic>m</jats:italic>+2</jats:sub> = 2<jats:italic>P</jats:italic> <jats:sub> <jats:italic>m</jats:italic>+1</jats:sub> + <jats:italic>P<jats:sub>m</jats:sub> </jats:italic> for all <jats:italic>m</jats:italic> ≥ 0. In this paper, for an integer <jats:italic>d</jats:italic> ≥ 2 which is square free, we show that there is at most one value of the positive integer <jats:italic>x</jats:italic> participating in the Pell equation <jats:italic>x</jats:italic> <jats:sup>2</jats:sup> − <jats:italic>dy</jats:italic> <jats:sup>2</jats:sup> = ± 1, which is a product of two Pell numbers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let (Pm ) m≥0 be the sequence of Pell numbers given by P 0 = 0, P 1 = 1, and P m+2 = 2P m+1 + Pm for all m ≥ 0. In this paper, for an integer d ≥ 2 which is square free, we show that there is at most one value of the positive integer x participating in the Pell equation x 2dy 2 = ± 1, which is a product of two Pell numbers.
分享
查看原文
关于两个佩尔数乘积的佩尔方程的 x 坐标
让 (Pm ) m≥0 是由 P 0 = 0、P 1 = 1 和 P m+2 = 2P m+1 + Pm 对所有 m ≥ 0 给出的佩尔数序列。在本文中,对于无平方差的整数 d ≥ 2,我们证明最多有一个正整数 x 的值参与佩尔方程 x 2 - dy 2 = ± 1,这是两个佩尔数的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信