Compact subsets of C λ,u (X)

Pub Date : 2024-05-28 DOI:10.1515/ms-2024-0012
Prashant Kumar, Pratibha Garg
{"title":"Compact subsets of C λ,u (X)","authors":"Prashant Kumar, Pratibha Garg","doi":"10.1515/ms-2024-0012","DOIUrl":null,"url":null,"abstract":"The famous Ascoli-Arzelà theorem served as a springboard for research into compactness in function spaces, particularly spaces of continuous functions. This paper investigates compact subsets of spaces of continuous functions endowed with topologies between the topology of pointwise convergence and the topology of uniform convergence. More precisely, this paper studies necessary and sufficient conditions for a subset to be compact in <jats:italic>C</jats:italic> <jats:sub> <jats:italic>λ</jats:italic>,<jats:italic>u</jats:italic> </jats:sub>(<jats:italic>X</jats:italic>) for a locally-<jats:italic>λ</jats:italic> space <jats:italic>X</jats:italic> when <jats:italic>λ</jats:italic> ⊇ 𝓕(<jats:italic>X</jats:italic>), for a hemi-<jats:overline> <jats:italic>λ</jats:italic> </jats:overline> <jats:italic>λ<jats:sub>f</jats:sub> </jats:italic>-space <jats:italic>X</jats:italic> when <jats:italic>λ</jats:italic> ⊆ 𝓟 𝓢(<jats:italic>X</jats:italic>), and for a <jats:italic>k</jats:italic>-space <jats:italic>X</jats:italic> when <jats:italic>λ</jats:italic> ⊇ 𝓚(<jats:italic>X</jats:italic>). This paper also studies that every bounded subset of <jats:italic>C</jats:italic> <jats:sub> <jats:italic>λ</jats:italic>,<jats:italic>u</jats:italic> </jats:sub>(<jats:italic>X</jats:italic>) has compact closure for some classes of topological spaces <jats:italic>X</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The famous Ascoli-Arzelà theorem served as a springboard for research into compactness in function spaces, particularly spaces of continuous functions. This paper investigates compact subsets of spaces of continuous functions endowed with topologies between the topology of pointwise convergence and the topology of uniform convergence. More precisely, this paper studies necessary and sufficient conditions for a subset to be compact in C λ,u (X) for a locally-λ space X when λ ⊇ 𝓕(X), for a hemi- λ λf -space X when λ ⊆ 𝓟 𝓢(X), and for a k-space X when λ ⊇ 𝓚(X). This paper also studies that every bounded subset of C λ,u (X) has compact closure for some classes of topological spaces X.
分享
查看原文
C λ,u (X) 的紧凑子集
著名的阿斯科利-阿尔泽拉定理是研究函数空间(尤其是连续函数空间)紧凑性的跳板。本文研究连续函数空间的紧凑子集,其拓扑介于点收敛拓扑和均匀收敛拓扑之间。更确切地说,对于局部-λ空间 X(当λ⊇ 𝓕(X)时),对于半λf -空间 X(当λ ⊆ 𝓟 𝓢(X)时),以及对于 k 空间 X(当λ⊇ 𝓚(X)时),本文研究了子集在 C λ,u (X) 中紧凑的必要条件和充分条件。本文还研究了对于某些类别的拓扑空间 X,C λ,u (X) 的每个有界子集都有紧凑闭包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信