All iterated function systems are Lipschitz up to an equivalent metric

Michał Popławski
{"title":"All iterated function systems are Lipschitz up to an equivalent metric","authors":"Michał Popławski","doi":"arxiv-2405.16977","DOIUrl":null,"url":null,"abstract":"A finite family $\\mathcal{F}=\\{f_1,\\ldots,f_n\\}$ of continuous selfmaps of a\ngiven metric space $X$ is called an iterated function system (shortly IFS). In\na case of contractive selfmaps of a complete metric space is well-known that\nIFS has an unique attractor \\cite{Hu}. However, in \\cite{LS} authors studied\nhighly non-contractive IFSs, i.e. such families\n$\\mathcal{F}=\\{f_1,\\ldots,f_n\\}$ of continuous selfmaps that for any\nremetrization of $X$ each function $f_i$ has Lipschitz constant $>1,\ni=1,\\ldots,n.$ They asked when one can remetrize $X$ that $\\mathcal{F}$ is\nLipschitz IFS, i.e. all $f_i's$ are Lipschitz (not necessarily contractive), $\ni=1,\\ldots,n$. We give a general positive answer for this problem by\nconstructing respective new metric (equivalent to the original one) on $X$,\ndetermined by a given family $\\mathcal{F}=\\{f_1,\\ldots,f_n\\}$ of continuous\nselfmaps of $X$. However, our construction is valid even for some specific\ninfinite families of continuous functions.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A finite family $\mathcal{F}=\{f_1,\ldots,f_n\}$ of continuous selfmaps of a given metric space $X$ is called an iterated function system (shortly IFS). In a case of contractive selfmaps of a complete metric space is well-known that IFS has an unique attractor \cite{Hu}. However, in \cite{LS} authors studied highly non-contractive IFSs, i.e. such families $\mathcal{F}=\{f_1,\ldots,f_n\}$ of continuous selfmaps that for any remetrization of $X$ each function $f_i$ has Lipschitz constant $>1, i=1,\ldots,n.$ They asked when one can remetrize $X$ that $\mathcal{F}$ is Lipschitz IFS, i.e. all $f_i's$ are Lipschitz (not necessarily contractive), $ i=1,\ldots,n$. We give a general positive answer for this problem by constructing respective new metric (equivalent to the original one) on $X$, determined by a given family $\mathcal{F}=\{f_1,\ldots,f_n\}$ of continuous selfmaps of $X$. However, our construction is valid even for some specific infinite families of continuous functions.
所有迭代函数系统都是 Lipschitz 的,直到等价度量为止
给定度量空间 $X$ 的连续自映射的有限族 $\mathcal{F}=\{f_1,\ldots,f_n\}$ 称为迭代函数系统(简称 IFS)。众所周知,在完整度量空间的收缩自映射中,IFS 有一个唯一的吸引子 \cite{Hu}。然而,在(cite{LS})中,作者们研究了高度非收缩的 IFS,即连续自映射的系列$mathcal{F}=\{f_1,\ldots,f_n\}$,对于 $X$ 的任何重映射,每个函数 $f_i$ 都有 Lipschitz 常量 $>1,i=1,\ldots,n。$ 他们问什么时候可以重映射 $X$ 使 $\mathcal{F}$ 是 Lipschitz IFS,即所有 $f_i's$ 都是 Lipschitz(不一定是收缩的),$i=1,\ldots,n$。我们通过在 $X$ 上构造各自的新度量(等同于原度量),给出了这个问题的一般肯定答案,这个新度量由 $X$ 的连续自映射的给定族 $\mathcal{F}=\{f_1,\ldots,f_n\}$ 决定。然而,我们的构造甚至对某些特定的连续函数无穷族也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信