{"title":"Non-commutative effect algebras, L-algebras, and local duality","authors":"Wolfgang Rump","doi":"10.1515/ms-2024-0034","DOIUrl":null,"url":null,"abstract":"GPE-algebras were introduced by Dvurečenskij and Vetterlein as unbounded pseudo-effect algebras. Recently, they have been characterized as partial <jats:italic>L</jats:italic>-algebras with local duality. In the present paper, GPE-algebras with an everywhere defined <jats:italic>L</jats:italic>-algebra operation are investigated. For example, linearly ordered GPE-algebra are of that type. They are characterized by their self-similar closures which are represented as negative cones of totally ordered groups. More generally, GPE-algebras with an everywhere defined multiplication are identified as negative cones of directed groups. If their partial <jats:italic>L</jats:italic>-algebra structure is globally defined, the enveloping group is lattice-ordered. For any self-similar <jats:italic>L</jats:italic>-algebra <jats:italic>A</jats:italic>, exponent maps are introduced, generalizing conjugation in the structure group. It is proved that the exponent maps are <jats:italic>L</jats:italic>-algebra automorphisms of <jats:italic>A</jats:italic> if and only if <jats:italic>A</jats:italic> is a GPE-algebra. As an application, a new characterization of cone algebras is obtained. Lattice GPE-algebras are shown to be equivalent to ∧-closed <jats:italic>L</jats:italic>-algebras with local duality.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
GPE-algebras were introduced by Dvurečenskij and Vetterlein as unbounded pseudo-effect algebras. Recently, they have been characterized as partial L-algebras with local duality. In the present paper, GPE-algebras with an everywhere defined L-algebra operation are investigated. For example, linearly ordered GPE-algebra are of that type. They are characterized by their self-similar closures which are represented as negative cones of totally ordered groups. More generally, GPE-algebras with an everywhere defined multiplication are identified as negative cones of directed groups. If their partial L-algebra structure is globally defined, the enveloping group is lattice-ordered. For any self-similar L-algebra A, exponent maps are introduced, generalizing conjugation in the structure group. It is proved that the exponent maps are L-algebra automorphisms of A if and only if A is a GPE-algebra. As an application, a new characterization of cone algebras is obtained. Lattice GPE-algebras are shown to be equivalent to ∧-closed L-algebras with local duality.