Juan Pablo Benavides-Tocarruncho, Horacio Paz, Nelly Rodríguez, Rosa Arrieta, Camila Pizano, Beatriz Salgado-Negret
{"title":"Belowground differentiation among trees in a degraded tropical dry forest landscape: no evidence of a collaboration gradient","authors":"Juan Pablo Benavides-Tocarruncho, Horacio Paz, Nelly Rodríguez, Rosa Arrieta, Camila Pizano, Beatriz Salgado-Negret","doi":"10.1017/s0266467424000129","DOIUrl":null,"url":null,"abstract":"Fine roots are specialized in nutrient and water acquisition and are critical for species performance and ecosystem functioning. Recent evidence has shown a broad root economic space determined by the orthogonal collaboration and conservation gradients related to resource acquisition and resource conservation, respectively. However, whether these gradients exist among tree species growing in degraded ecosystems where root growth is limited by soil conditions is much an open question. We measured six fine root traits (root diameter, specific root length, root dry matter content, root tissue density, branching intensity, and percentage of arbuscular mycorrhizal colonization) in 11 young tree species growing in sympatry for 9 years in degraded pastures in a tropical dry forest (TDF) in Colombia to determine (1) the covariation between fine root traits and (2) the patterns of belowground niche differentiation among 11 species coexisting under the same soil conditions. The covariation between fine root traits resembled the acquisitive-conservative, but not the collaboration gradient for this degraded habitat. The percentage of mycorrhizal colonization, a critical trait associated with the collaboration gradient, was unrelated to any fine root trait. Furthermore, we found a strong belowground differentiation among species, mainly across root diameter and branching intensity. Our results suggest that compacted degraded soils in TDF landscapes may affect the collaborative association with mycorrhizae, mostly allowing species differentiation along the do-it-yourself gradient. This finding suggests a hypothesis that needs to be tested with more species and sites. We discuss the importance of using root traits to aid species selection for restoration purposes.","PeriodicalId":49968,"journal":{"name":"Journal of Tropical Ecology","volume":"48 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/s0266467424000129","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fine roots are specialized in nutrient and water acquisition and are critical for species performance and ecosystem functioning. Recent evidence has shown a broad root economic space determined by the orthogonal collaboration and conservation gradients related to resource acquisition and resource conservation, respectively. However, whether these gradients exist among tree species growing in degraded ecosystems where root growth is limited by soil conditions is much an open question. We measured six fine root traits (root diameter, specific root length, root dry matter content, root tissue density, branching intensity, and percentage of arbuscular mycorrhizal colonization) in 11 young tree species growing in sympatry for 9 years in degraded pastures in a tropical dry forest (TDF) in Colombia to determine (1) the covariation between fine root traits and (2) the patterns of belowground niche differentiation among 11 species coexisting under the same soil conditions. The covariation between fine root traits resembled the acquisitive-conservative, but not the collaboration gradient for this degraded habitat. The percentage of mycorrhizal colonization, a critical trait associated with the collaboration gradient, was unrelated to any fine root trait. Furthermore, we found a strong belowground differentiation among species, mainly across root diameter and branching intensity. Our results suggest that compacted degraded soils in TDF landscapes may affect the collaborative association with mycorrhizae, mostly allowing species differentiation along the do-it-yourself gradient. This finding suggests a hypothesis that needs to be tested with more species and sites. We discuss the importance of using root traits to aid species selection for restoration purposes.
期刊介绍:
Journal of Tropical Ecology aims to address topics of general relevance and significance to tropical ecology. This includes sub-disciplines of ecology, such as conservation biology, evolutionary ecology, marine ecology, microbial ecology, molecular ecology, quantitative ecology, etc. Studies in the field of tropical medicine, specifically where it involves ecological surroundings (e.g., zoonotic or vector-borne disease ecology), are also suitable. We also welcome methods papers, provided that the techniques are well-described and are of broad general utility.
Please keep in mind that studies focused on specific geographic regions or on particular taxa will be better suited to more specialist journals. In order to help the editors make their decision, in your cover letter please address the specific hypothesis your study addresses, and how the results will interest the broad field of tropical ecology. While we will consider purely descriptive studies of outstanding general interest, the case for them should be made in the cover letter.