{"title":"Formation of Epoxycyclooctane during the Co-Oxidation of Cyclooctene and Alkylbenzenes","authors":"N. I. Kuznetsova, V. N. Zudin","doi":"10.1134/S2070050424700041","DOIUrl":null,"url":null,"abstract":"<p>Cyclooctene and alkylbenzenes are subjected to co-oxidation in oxygen and a system of two catalysts. Radical catalyst Fe(acac)<sub>3</sub>/NHPI mediates the formation of alkylbenzene hydroperoxides, which are consumed in situ during the MoO<sub>3</sub>/SiO<sub>2</sub>-catalyzed epoxidation of cyclooctene. The chain oxidation rate is limited in cyclooctene and MoO<sub>3</sub>/SiO<sub>2</sub>, but radical catalyst Fe(acac)<sub>3</sub>/NHPI retains fairly high activity in the oxidation of alkylbenzene in hydroperoxide. It is found that isopropylbenzene is a better co-reducing agent than ethylbenzene because it ensures more vigorous and selective formation of epoxycyclooctane. At optimized amounts of components and a temperature of 80°C, selectivity toward epoxycyclooctane reaches 92 and 96% in ethylbenzene or isopropylbenzene, respectively, with more than 70% conversion of cyclooctene.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 2","pages":"141 - 151"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424700041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclooctene and alkylbenzenes are subjected to co-oxidation in oxygen and a system of two catalysts. Radical catalyst Fe(acac)3/NHPI mediates the formation of alkylbenzene hydroperoxides, which are consumed in situ during the MoO3/SiO2-catalyzed epoxidation of cyclooctene. The chain oxidation rate is limited in cyclooctene and MoO3/SiO2, but radical catalyst Fe(acac)3/NHPI retains fairly high activity in the oxidation of alkylbenzene in hydroperoxide. It is found that isopropylbenzene is a better co-reducing agent than ethylbenzene because it ensures more vigorous and selective formation of epoxycyclooctane. At optimized amounts of components and a temperature of 80°C, selectivity toward epoxycyclooctane reaches 92 and 96% in ethylbenzene or isopropylbenzene, respectively, with more than 70% conversion of cyclooctene.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.