{"title":"Machine overstrain prediction for early detection and effective maintenance: A machine learning algorithm comparison","authors":"Bruno Mota, Pedro Faria, Carlos Ramos","doi":"10.1093/jigpal/jzae055","DOIUrl":null,"url":null,"abstract":"Machine stability and energy efficiency have become major issues in the manufacturing industry, primarily during the COVID-19 pandemic where fluctuations in supply and demand were common. As a result, Predictive Maintenance (PdM) has become more desirable, since predicting failures ahead of time allows to avoid downtime and improves stability and energy efficiency in machines. One type of machine failure stands out due to its impact, machine overstrain, which can occur when machines are used beyond their tolerable limit. From the current literature, there are little to no relevant works that focus on machine overstrain failure detection or prediction. Accordingly, the purpose of this paper is to implement and compare four Machine Learning (ML) algorithms for PdM applied to machine overstrain failures: Artificial Neural Network (ANN), Gradient Boosting, Random Forest and Support Vector Machine (SVM). Moreover, it proposes a training methodology for imbalanced data and the automatic optimization of hyperparameters, which aims to improve performance in the ML models. To evaluate the performance of the ML models, a synthetic dataset that simulates industrial machine data is used. The obtained results show the robustness of the proposed methodology, with the ANN and SVM models achieving a perfect recall score, with 98.95% and 98.85% in accuracy, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Machine stability and energy efficiency have become major issues in the manufacturing industry, primarily during the COVID-19 pandemic where fluctuations in supply and demand were common. As a result, Predictive Maintenance (PdM) has become more desirable, since predicting failures ahead of time allows to avoid downtime and improves stability and energy efficiency in machines. One type of machine failure stands out due to its impact, machine overstrain, which can occur when machines are used beyond their tolerable limit. From the current literature, there are little to no relevant works that focus on machine overstrain failure detection or prediction. Accordingly, the purpose of this paper is to implement and compare four Machine Learning (ML) algorithms for PdM applied to machine overstrain failures: Artificial Neural Network (ANN), Gradient Boosting, Random Forest and Support Vector Machine (SVM). Moreover, it proposes a training methodology for imbalanced data and the automatic optimization of hyperparameters, which aims to improve performance in the ML models. To evaluate the performance of the ML models, a synthetic dataset that simulates industrial machine data is used. The obtained results show the robustness of the proposed methodology, with the ANN and SVM models achieving a perfect recall score, with 98.95% and 98.85% in accuracy, respectively.