Hybrid scaling theory of localization transition in a non-Hermitian disorder Aubry-André model

Yue-Mei Sun, Xin-Yu Wang, Zi-Kang Wang, Liang-Jun Zhai
{"title":"Hybrid scaling theory of localization transition in a non-Hermitian disorder Aubry-André model","authors":"Yue-Mei Sun, Xin-Yu Wang, Zi-Kang Wang, Liang-Jun Zhai","doi":"arxiv-2405.15220","DOIUrl":null,"url":null,"abstract":"In this paper, we study the critical behaviors in the non-Hermtian disorder\nAubry-Andr\\'{e} (DAA) model, and we assume the non-Hermiticity is introduced by\nthe nonreciprocal hopping. We employ the localization length $\\xi$, the inverse\nparticipation ratio ($\\rm IPR$), and the real part of the energy gap between\nthe first excited state and the ground state $\\Delta E$ as the character\nquantities to describe the critical properties of the localization transition.\nBy preforming the scaling analysis, the critical exponents of the non-Hermitian\nAnderson model and the non-Hermitian DAA model are obtained, and these critical\nexponents are different from their Hermitian counterparts, indicating the\nHermitian and non-Hermitian disorder and DAA models belong to different\nuniverse classes. The critical exponents of non-Hermitian DAA model are\nremarkably different from both the pure non-Hermitian AA model and the\nnon-Hermitian Anderson model, showing that disorder is a independent relevant\ndirection at the non-Hermitian AA model. We further propose a hybrid scaling\ntheory to describe the critical behavior in the overlapping critical region\nconstituted by the critical regions of non-Hermitian DAA model and the\nnon-Hermitian Anderson localization transition.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the critical behaviors in the non-Hermtian disorder Aubry-Andr\'{e} (DAA) model, and we assume the non-Hermiticity is introduced by the nonreciprocal hopping. We employ the localization length $\xi$, the inverse participation ratio ($\rm IPR$), and the real part of the energy gap between the first excited state and the ground state $\Delta E$ as the character quantities to describe the critical properties of the localization transition. By preforming the scaling analysis, the critical exponents of the non-Hermitian Anderson model and the non-Hermitian DAA model are obtained, and these critical exponents are different from their Hermitian counterparts, indicating the Hermitian and non-Hermitian disorder and DAA models belong to different universe classes. The critical exponents of non-Hermitian DAA model are remarkably different from both the pure non-Hermitian AA model and the non-Hermitian Anderson model, showing that disorder is a independent relevant direction at the non-Hermitian AA model. We further propose a hybrid scaling theory to describe the critical behavior in the overlapping critical region constituted by the critical regions of non-Hermitian DAA model and the non-Hermitian Anderson localization transition.
非赫米提无序奥布里-安德烈模型中局部化转变的混合缩放理论
本文研究了非赫米特无序奥布里-安德尔(DAA)模型中的临界行为,并假定非赫米特性是由非互跳引入的。我们采用局域化长度 $\xi$、反参与比(inverseparticipation ratio)($\rm IPR$)和第一激发态与基态之间能隙的实部 $\Delta E$ 作为描述局域化转变临界特性的特征量。通过预缩放分析,得到了非赫米提安德森模型和非赫米提DAA模型的临界指数,这些临界指数与赫米提模型的临界指数不同,表明赫米提、非赫米提无序和DAA模型属于不同的宇宙类别。非ermitian DAA模型的临界指数与纯粹的非Hermitian AA模型和非Hermitian Anderson模型都有显著的不同,表明无序是非Hermitian AA模型的一个独立的相关方向。我们进一步提出了一种混合缩放理论来描述由非ermitian DAA 模型临界区和当时的非ermitian Anderson 局部转变临界区构成的重叠临界区的临界行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信