Flow structure and shear stress in the presence of both ice cover on water surface and leafless vegetation in channel bed

IF 2.5 3区 工程技术
Mahboubeh Barahimi, Jueyi Sui
{"title":"Flow structure and shear stress in the presence of both ice cover on water surface and leafless vegetation in channel bed","authors":"Mahboubeh Barahimi,&nbsp;Jueyi Sui","doi":"10.1007/s42241-024-0021-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate the previously unexplored effects of ice cover and submerged vegetation on flow structure. Experiments were undertaken under both open channel and ice-covered flow conditions. The bed material consisted of three non-uniform sands. The findings revealed that when vegetation patches were present on the bed and an ice cover was present, the velocity profiles exhibited a distinctive pattern with two peak values. Turbulent kinetic energy (TKE) also exhibited two peaks, one above the vegetation bending height and another at the sheath section, with a decreasing trend towards the ice cover. Furthermore, quadrant analysis showed that when the flow surface is covered by an ice cover, the contributions of inward and outward events increased compared with those observed in an open channel flow. In most cases, these contributions surpassed the sweep and ejection events. The findings enhance our understanding of vegetation’s response to diverse surface conditions and have practical implications for river management and environmental engineering.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 2","pages":"340 - 354"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0021-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the previously unexplored effects of ice cover and submerged vegetation on flow structure. Experiments were undertaken under both open channel and ice-covered flow conditions. The bed material consisted of three non-uniform sands. The findings revealed that when vegetation patches were present on the bed and an ice cover was present, the velocity profiles exhibited a distinctive pattern with two peak values. Turbulent kinetic energy (TKE) also exhibited two peaks, one above the vegetation bending height and another at the sheath section, with a decreasing trend towards the ice cover. Furthermore, quadrant analysis showed that when the flow surface is covered by an ice cover, the contributions of inward and outward events increased compared with those observed in an open channel flow. In most cases, these contributions surpassed the sweep and ejection events. The findings enhance our understanding of vegetation’s response to diverse surface conditions and have practical implications for river management and environmental engineering.

同时存在水面冰盖和河床无叶植被时的水流结构和剪应力
这项研究旨在调查冰盖和沉水植被对水流结构的影响,这种影响此前尚未被探索过。实验在明渠和冰盖两种水流条件下进行。河床材料由三种不均匀的沙子组成。实验结果表明,当河床上有植被斑块和冰层覆盖时,流速剖面呈现出一种独特的模式,有两个峰值。湍流动能(TKE)也表现出两个峰值,一个在植被弯曲高度以上,另一个在鞘段,并呈向冰盖方向递减的趋势。此外,象限分析表明,当流面被冰盖覆盖时,与在明渠流中观察到的情况相比,内向和外向事件的贡献增加了。在大多数情况下,这些贡献超过了横扫和抛射事件。这些发现加深了我们对植被对不同表面条件反应的理解,对河流管理和环境工程具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
12.00%
发文量
2374
审稿时长
4.6 months
期刊介绍: Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信