Isotropic and numerical equivalence for Chow groups and Morava K-theories

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alexander Vishik
{"title":"Isotropic and numerical equivalence for Chow groups and Morava K-theories","authors":"Alexander Vishik","doi":"10.1007/s00222-024-01267-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove the conjecture claiming that, over a flexible field, <i>isotropic Chow groups</i> coincide with <i>numerical Chow groups</i> (with <span>\\({\\Bbb {F}}_{p}\\)</span>-coefficients). This shows that Isotropic Chow motives coincide with Numerical Chow motives. In particular, homs between such objects are finite groups and ⊗ has no zero-divisors. It provides a large supply of new points for the Balmer spectrum of the Voevodsky motivic category. We also prove the Morava K-theory version of the above result, which permits to construct plenty of new points for the Balmer spectrum of the Morel-Voevodsky <span>\\({\\mathbb{A}}^{1}\\)</span>-stable homotopy category. This substantially improves our understanding of the mentioned spectra whose description is a major open problem.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01267-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove the conjecture claiming that, over a flexible field, isotropic Chow groups coincide with numerical Chow groups (with \({\Bbb {F}}_{p}\)-coefficients). This shows that Isotropic Chow motives coincide with Numerical Chow motives. In particular, homs between such objects are finite groups and ⊗ has no zero-divisors. It provides a large supply of new points for the Balmer spectrum of the Voevodsky motivic category. We also prove the Morava K-theory version of the above result, which permits to construct plenty of new points for the Balmer spectrum of the Morel-Voevodsky \({\mathbb{A}}^{1}\)-stable homotopy category. This substantially improves our understanding of the mentioned spectra whose description is a major open problem.

周群和莫拉瓦 K 理论的等价性和数值等价性
本文证明了一个猜想,即在一个灵活域上,各向同性周群与数值周群(具有 \({\Bbb {F}}_{p}\) -系数)重合。这表明各向同性周原基与数值周原基是重合的。特别是,这些对象之间的 "嗡 "都是有限群,而且⊗没有零二维。这为 Voevodsky 动机范畴的巴尔默谱提供了大量新点。我们还证明了上述结果的莫拉瓦 K 理论版本,它允许为莫雷尔-伏沃斯基 \({\mathbb{A}}^{1}\)-稳定同调范畴的巴尔默谱构造大量新点。这大大提高了我们对上述谱的理解,而对这些谱的描述是一个重大的未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信