A Lagrangian filling for every cluster seed

IF 2.6 1区 数学 Q1 MATHEMATICS
Roger Casals, Honghao Gao
{"title":"A Lagrangian filling for every cluster seed","authors":"Roger Casals, Honghao Gao","doi":"10.1007/s00222-024-01268-y","DOIUrl":null,"url":null,"abstract":"<p>We show that each cluster seed in the augmentation variety contains an embedded exact Lagrangian filling. This resolves the matter of surjectivity of the map from Lagrangian fillings to cluster seeds. The main new technique to produce these Lagrangian fillings is the construction and study of a quiver with potential associated to curve configurations. We prove that its deformation space is trivial and show how to use it to manipulate Lagrangian fillings with <span>\\(\\mathbb{L}\\)</span>-compressing systems via Lagrangian disk surgeries.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01268-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that each cluster seed in the augmentation variety contains an embedded exact Lagrangian filling. This resolves the matter of surjectivity of the map from Lagrangian fillings to cluster seeds. The main new technique to produce these Lagrangian fillings is the construction and study of a quiver with potential associated to curve configurations. We prove that its deformation space is trivial and show how to use it to manipulate Lagrangian fillings with \(\mathbb{L}\)-compressing systems via Lagrangian disk surgeries.

Abstract Image

每个集群种子的拉格朗日填充
我们证明,在增量种类中的每个簇种子都包含一个内嵌的精确拉格朗日填充。这就解决了从拉格朗日填充到簇种子的映射的可射性问题。产生这些拉格朗日填充的主要新技术是构造和研究与曲线构型相关的具有势的四维空间。我们证明了它的变形空间是微不足道的,并展示了如何利用它通过拉格朗日圆盘手术操纵具有 \(\mathbb{L}\) 压缩系统的拉格朗日填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信