{"title":"A Lagrangian filling for every cluster seed","authors":"Roger Casals, Honghao Gao","doi":"10.1007/s00222-024-01268-y","DOIUrl":null,"url":null,"abstract":"<p>We show that each cluster seed in the augmentation variety contains an embedded exact Lagrangian filling. This resolves the matter of surjectivity of the map from Lagrangian fillings to cluster seeds. The main new technique to produce these Lagrangian fillings is the construction and study of a quiver with potential associated to curve configurations. We prove that its deformation space is trivial and show how to use it to manipulate Lagrangian fillings with <span>\\(\\mathbb{L}\\)</span>-compressing systems via Lagrangian disk surgeries.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01268-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that each cluster seed in the augmentation variety contains an embedded exact Lagrangian filling. This resolves the matter of surjectivity of the map from Lagrangian fillings to cluster seeds. The main new technique to produce these Lagrangian fillings is the construction and study of a quiver with potential associated to curve configurations. We prove that its deformation space is trivial and show how to use it to manipulate Lagrangian fillings with \(\mathbb{L}\)-compressing systems via Lagrangian disk surgeries.
期刊介绍:
This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).