Unorientable topological gravity and orthogonal random matrix universality

Torsten Weber, Jarod Tall, Fabian Haneder, Juan Diego Urbina, Klaus Richter
{"title":"Unorientable topological gravity and orthogonal random matrix universality","authors":"Torsten Weber, Jarod Tall, Fabian Haneder, Juan Diego Urbina, Klaus Richter","doi":"arxiv-2405.17177","DOIUrl":null,"url":null,"abstract":"The duality of Jackiw-Teitelboim (JT) gravity and a double scaled matrix\nintegral has led to studies of the canonical spectral form factor (SFF) in the\nso called $\\tau-$scaled limit of large times, $t \\to \\infty$, and fixed\ntemperature in order to demonstrate agreement with universal random matrix\ntheory (RMT). Though this has been established for the unitary case, extensions\nto other symmetry classes requires the inclusion of unorientable manifolds in\nthe sum over geometries, necessary to address time reversal invariance, and\nregularization of the corresponding prime geometrical objects, the\nWeil-Petersson (WP) volumes. We report here how universal signatures of quantum\nchaos, witnessed by the fidelity to the Gaussian orthogonal ensemble, emerge\nfor the low-energy limit of unorientable JT gravity, i.e. the Airy\nmodel/topological gravity. To this end, we implement the loop equations for the\ncorresponding dual (double-scaled) matrix model and find the generic form of\nthe Airy WP volumes, supported by calculations using unorientable Kontsevich\ngraphs. In an apparent violation of the gravity/chaos duality, the\n$\\tau-$scaled SFF on the gravity side acquires both logarithmic and power law\ncontributions in $t$, not manifestly present on the RMT side. We show the\nexpressions can be made to agree by means of bootstrapping-like relations\nhidden in the asymptotic expansions of generalized hypergeometric functions.\nThus, we are able to establish strong evidence of the quantum chaotic nature of\nunorientable topological gravity.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.17177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The duality of Jackiw-Teitelboim (JT) gravity and a double scaled matrix integral has led to studies of the canonical spectral form factor (SFF) in the so called $\tau-$scaled limit of large times, $t \to \infty$, and fixed temperature in order to demonstrate agreement with universal random matrix theory (RMT). Though this has been established for the unitary case, extensions to other symmetry classes requires the inclusion of unorientable manifolds in the sum over geometries, necessary to address time reversal invariance, and regularization of the corresponding prime geometrical objects, the Weil-Petersson (WP) volumes. We report here how universal signatures of quantum chaos, witnessed by the fidelity to the Gaussian orthogonal ensemble, emerge for the low-energy limit of unorientable JT gravity, i.e. the Airy model/topological gravity. To this end, we implement the loop equations for the corresponding dual (double-scaled) matrix model and find the generic form of the Airy WP volumes, supported by calculations using unorientable Kontsevich graphs. In an apparent violation of the gravity/chaos duality, the $\tau-$scaled SFF on the gravity side acquires both logarithmic and power law contributions in $t$, not manifestly present on the RMT side. We show the expressions can be made to agree by means of bootstrapping-like relations hidden in the asymptotic expansions of generalized hypergeometric functions. Thus, we are able to establish strong evidence of the quantum chaotic nature of unorientable topological gravity.
不可定向拓扑引力和正交随机矩阵普遍性
杰克-特尔布依姆(JT)引力和双标度矩阵积分的对偶性导致了对大时间($t \to \infty$)和固定温度的所谓$\tau-$标度极限的典型谱形式因子(SFF)的研究,以证明与通用随机矩阵理论(RMT)的一致性。虽然这已经在单元情况下建立起来,但要扩展到其他对称类,就需要在几何总和中包含不可定向流形,这对于解决时间反转不变性问题以及相应的质点几何对象--魏尔-彼得森(WP)卷--的规则化是必要的。我们在此报告量子混沌的普遍特征是如何在不可定向 JT 引力(即空气模型/拓扑引力)的低能极限中出现的,这体现在对高斯正交集合的保真度上。为此,我们实现了相应的对偶(双尺度)矩阵模型的环方程,并通过使用不可定向康采维奇图的计算,找到了艾里 WP 量的一般形式。在明显违反引力/混沌二元性的情况下,引力侧的($\tau-$)缩放 SFF 在 $t$ 中获得了对数和幂律贡献,而这在 RMT 侧并不明显。我们通过广义超几何函数渐近展开中隐藏的类似引导关系证明了这两个表达式是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信