On invariant rational functions under rational transformations

Jason Bell, Rahim Moosa, Matthew Satriano
{"title":"On invariant rational functions under rational transformations","authors":"Jason Bell, Rahim Moosa, Matthew Satriano","doi":"10.1007/s00029-024-00940-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be an algebraic variety equipped with a dominant rational map <span>\\(\\phi :X\\dashrightarrow X\\)</span>. A new quantity measuring the interaction of <span>\\((X,\\phi )\\)</span> with trivial dynamical systems is introduced; the <i>stabilised algebraic dimension</i> of <span>\\((X,\\phi )\\)</span> captures the maximum number of new algebraically independent invariant rational functions on <span>\\((X\\times Y,\\phi \\times \\psi )\\)</span>, as <span>\\(\\psi :Y\\dashrightarrow Y\\)</span> ranges over all dominant rational maps on algebraic varieties. It is shown that this birational invariant agrees with the maximum <span>\\(\\dim X'\\)</span> where <span>\\((X,\\phi )\\dashrightarrow (X',\\phi ')\\)</span> is a dominant rational equivariant map and <span>\\(\\phi '\\)</span> is part of an algebraic group action on <span>\\(X'\\)</span>. As a consequence, it is deduced that if some cartesian power of <span>\\((X,\\phi )\\)</span> admits a nonconstant invariant rational function, then already the second cartesian power does.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00940-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be an algebraic variety equipped with a dominant rational map \(\phi :X\dashrightarrow X\). A new quantity measuring the interaction of \((X,\phi )\) with trivial dynamical systems is introduced; the stabilised algebraic dimension of \((X,\phi )\) captures the maximum number of new algebraically independent invariant rational functions on \((X\times Y,\phi \times \psi )\), as \(\psi :Y\dashrightarrow Y\) ranges over all dominant rational maps on algebraic varieties. It is shown that this birational invariant agrees with the maximum \(\dim X'\) where \((X,\phi )\dashrightarrow (X',\phi ')\) is a dominant rational equivariant map and \(\phi '\) is part of an algebraic group action on \(X'\). As a consequence, it is deduced that if some cartesian power of \((X,\phi )\) admits a nonconstant invariant rational function, then already the second cartesian power does.

论有理变换下的不变有理函数
让 X 是一个代数簇,其上有一个有理映射(\phi :X\dashrightarrow X\ )。引入了一个衡量 \((X,\phi )\) 与琐碎动力系统相互作用的新量; \((X,\phi )\) 的稳定代数维度捕捉了 \((X\times Y,\phi \times \psi )\) 上新的代数独立不变有理函数的最大数量,因为 \(\psi :Ydashrightarrow Y)遍及代数变体上的所有显有理映射。研究表明,这个双不变性与最大值((\dim X'\))一致,其中(((X,\phi )\dashrightarrow (X',\phi')\)是一个有理等变映射,并且((\phi '\)是代数群作用在(X'\)上的一部分。因此,我们可以推导出,如果 \((X,\phi )\) 的某个笛卡尔幂包含一个非恒定不变的有理函数,那么第二个笛卡尔幂也包含这个非恒定不变的有理函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信