The Scattering Matrix-Based Characteristic Mode for Structure amidst Arbitrary Background: Theory, Benchmark and Applications

Chenbo Shi, Jin Pan, Xin Gu, Shichen Liang, Le Zuo
{"title":"The Scattering Matrix-Based Characteristic Mode for Structure amidst Arbitrary Background: Theory, Benchmark and Applications","authors":"Chenbo Shi, Jin Pan, Xin Gu, Shichen Liang, Le Zuo","doi":"arxiv-2405.15627","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for computing substructure\ncharacteristic modes. This method leverages electromagnetic scattering matrices\nand spherical wave expansion to directly decompose electromagnetic fields.\nUnlike conventional methods that rely on the impedance matrix generated by the\nmethod of moments (MoM), our technique simplifies the problem into a\nsmall-scale ordinary eigenvalue problem, improving numerical dynamics and\ncomputational efficiency. We have developed analytical substructure\ncharacteristic mode solutions for a scenario involving two spheres, which can\nserve as benchmarks for evaluating other numerical solvers. A key advantage of\nour method is its independence from specific MoM frameworks, allowing for the\nuse of various numerical methods. This flexibility paves the way for\nsubstructure characteristic mode decomposition to become a universal frequency\ntechnique.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach for computing substructure characteristic modes. This method leverages electromagnetic scattering matrices and spherical wave expansion to directly decompose electromagnetic fields. Unlike conventional methods that rely on the impedance matrix generated by the method of moments (MoM), our technique simplifies the problem into a small-scale ordinary eigenvalue problem, improving numerical dynamics and computational efficiency. We have developed analytical substructure characteristic mode solutions for a scenario involving two spheres, which can serve as benchmarks for evaluating other numerical solvers. A key advantage of our method is its independence from specific MoM frameworks, allowing for the use of various numerical methods. This flexibility paves the way for substructure characteristic mode decomposition to become a universal frequency technique.
基于散射矩阵的任意背景中结构的特征模式:理论、基准和应用
本文提出了一种计算子结构特征模式的新方法。与依赖矩方法(MoM)生成的阻抗矩阵的传统方法不同,我们的技术将问题简化为小规模普通特征值问题,从而提高了数值动力学和计算效率。我们为涉及两个球体的情况开发了分析性子结构特征模式解,可作为评估其他数值求解器的基准。我们方法的一个关键优势是独立于特定的 MoM 框架,允许使用各种数值方法。这种灵活性为子结构特征模态分解成为一种通用频率技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信