Density Fluctuations for the Multi-Species Stirring Process

Pub Date : 2024-05-28 DOI:10.1007/s10959-024-01340-6
Francesco Casini, Cristian Giardinà, Frank Redig
{"title":"Density Fluctuations for the Multi-Species Stirring Process","authors":"Francesco Casini, Cristian Giardinà, Frank Redig","doi":"10.1007/s10959-024-01340-6","DOIUrl":null,"url":null,"abstract":"<p>We study the density fluctuations at equilibrium of the multi-species stirring process, a natural multi-type generalization of the symmetric (partial) exclusion process. In the diffusive scaling limit, the resulting process is a system of infinite-dimensional Ornstein–Uhlenbeck processes that are coupled in the noise terms. This shows that at the level of equilibrium fluctuations the species start to interact, even though at the level of the hydrodynamic limit each species diffuses separately. We consider also a generalization to a multi-species stirring process with a linear reaction term arising from species mutation. The general techniques used in the proof are based on the Dynkin martingale approach, combined with duality for the computation of the covariances.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01340-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the density fluctuations at equilibrium of the multi-species stirring process, a natural multi-type generalization of the symmetric (partial) exclusion process. In the diffusive scaling limit, the resulting process is a system of infinite-dimensional Ornstein–Uhlenbeck processes that are coupled in the noise terms. This shows that at the level of equilibrium fluctuations the species start to interact, even though at the level of the hydrodynamic limit each species diffuses separately. We consider also a generalization to a multi-species stirring process with a linear reaction term arising from species mutation. The general techniques used in the proof are based on the Dynkin martingale approach, combined with duality for the computation of the covariances.

Abstract Image

分享
查看原文
多物种搅拌过程的密度波动
我们研究了多物种搅拌过程平衡时的密度波动,这是对称(部分)排斥过程的一种自然的多类型概括。在扩散缩放极限中,所产生的过程是一个无限维的奥恩斯坦-乌伦贝克过程系统,其噪声项是耦合的。这表明,在平衡波动水平上,物种开始相互作用,尽管在流体力学极限水平上,每个物种都是单独扩散的。我们还考虑了多物种搅拌过程的一般化问题,该过程具有由物种变异引起的线性反应项。证明中使用的一般技术以 Dynkin martingale 方法为基础,结合二元性计算协方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信