An Analysis of Performance Bottlenecks in MRI Pre-Processing

Mathieu Dugré, Yohan Chatelain, Tristan Glatard
{"title":"An Analysis of Performance Bottlenecks in MRI Pre-Processing","authors":"Mathieu Dugré, Yohan Chatelain, Tristan Glatard","doi":"arxiv-2405.17650","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Image (MRI) pre-processing is a critical step for\nneuroimaging analysis. However, the computational cost of MRI pre-processing\npipelines is a major bottleneck for large cohort studies and some clinical\napplications. While High-Performance Computing (HPC) and, more recently, Deep\nLearning have been adopted to accelerate the computations, these techniques\nrequire costly hardware and are not accessible to all researchers. Therefore,\nit is important to understand the performance bottlenecks of MRI pre-processing\npipelines to improve their performance. Using Intel VTune profiler, we\ncharacterized the bottlenecks of several commonly used MRI-preprocessing\npipelines from the ANTs, FSL, and FreeSurfer toolboxes. We found that few\nfunctions contributed to most of the CPU time, and that linear interpolation\nwas the largest contributor. Data access was also a substantial bottleneck. We\nidentified a bug in the ITK library that impacts the performance of ANTs\npipeline in single-precision and a potential issue with the OpenMP scaling in\nFreeSurfer recon-all. Our results provide a reference for future efforts to\noptimize MRI pre-processing pipelines.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.17650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic Resonance Image (MRI) pre-processing is a critical step for neuroimaging analysis. However, the computational cost of MRI pre-processing pipelines is a major bottleneck for large cohort studies and some clinical applications. While High-Performance Computing (HPC) and, more recently, Deep Learning have been adopted to accelerate the computations, these techniques require costly hardware and are not accessible to all researchers. Therefore, it is important to understand the performance bottlenecks of MRI pre-processing pipelines to improve their performance. Using Intel VTune profiler, we characterized the bottlenecks of several commonly used MRI-preprocessing pipelines from the ANTs, FSL, and FreeSurfer toolboxes. We found that few functions contributed to most of the CPU time, and that linear interpolation was the largest contributor. Data access was also a substantial bottleneck. We identified a bug in the ITK library that impacts the performance of ANTs pipeline in single-precision and a potential issue with the OpenMP scaling in FreeSurfer recon-all. Our results provide a reference for future efforts to optimize MRI pre-processing pipelines.
核磁共振成像预处理性能瓶颈分析
磁共振成像(MRI)预处理是神经成像分析的关键步骤。然而,磁共振成像预处理管道的计算成本是大型队列研究和一些临床应用的主要瓶颈。虽然高性能计算(HPC)和最近的深度学习(DeepLearning)已被采用来加速计算,但这些技术需要昂贵的硬件,并非所有研究人员都能使用。因此,了解磁共振成像预处理管道的性能瓶颈以提高其性能非常重要。利用英特尔 VTune 分析器,我们分析了 ANTs、FSL 和 FreeSurfer 工具箱中几种常用磁共振成像预处理管道的瓶颈。我们发现,少数几个函数占用了大部分 CPU 时间,而线性插值是最大的贡献者。数据访问也是一个很大的瓶颈。我们在 ITK 库中发现了一个影响 ANTspipeline 单精度性能的错误,并发现了 FreeSurfer recon-all 中 OpenMP 扩展的潜在问题。我们的研究结果为今后优化磁共振成像预处理管道提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信