Elongational rheology of 2, 3 and 4 polymer stars connected by linear backbone chains

IF 2.3 3区 工程技术 Q2 MECHANICS
Valerian Hirschberg, Max G. Schußmann, Marie-Christin Röpert, Anika Goecke, Manfred Wilhelm, Manfred H. Wagner
{"title":"Elongational rheology of 2, 3 and 4 polymer stars connected by linear backbone chains","authors":"Valerian Hirschberg,&nbsp;Max G. Schußmann,&nbsp;Marie-Christin Röpert,&nbsp;Anika Goecke,&nbsp;Manfred Wilhelm,&nbsp;Manfred H. Wagner","doi":"10.1007/s00397-024-01455-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the elongational rheology of model polystyrene topologies with 2, 3 and 4 stars, which are connected by one (2-star or “Pom-Pom”), two (3-star) and three (4-star) linear backbone chains. The number of arms of each star varies from <i>q</i><sub><i>a</i></sub> = 3 to 24, the molecular weight of the arms from <i>M</i><sub><i>w,a</i></sub> = 25 kg/mol to 300 kg/mol, and the backbone chains from <i>M</i><sub><i>w,b</i></sub> = 100 kg/mol to 382 kg/mol. If the length of the arm is shorter than the length of the backbone, i.e. <i>M</i><sub><i>w,a</i></sub> &lt; <i>M</i><sub><i>w,b</i></sub>, and despite the vastly different topologies considered, the elongational stress growth coefficient can be modeled by the Hierarchical Multi-mode Molecular Stress Function (HMMSF) model, based exclusively on the linear-viscoelastic characterization and a single nonlinear parameter, the dilution modulus. If the length of the arms of the stars is similar or longer than the length of the backbone chain (<i>M</i><sub><i>w,a</i></sub> ≥ <i>M</i><sub><i>w,b</i></sub>) connecting two stars, the impact of the backbone chain on the rheology vanishes and the elongational stress growth coefficient is dominated by the star topology showing similar features of the elongational stress growth coefficient as those of linear polymers.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 6","pages":"407 - 422"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-024-01455-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01455-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the elongational rheology of model polystyrene topologies with 2, 3 and 4 stars, which are connected by one (2-star or “Pom-Pom”), two (3-star) and three (4-star) linear backbone chains. The number of arms of each star varies from qa = 3 to 24, the molecular weight of the arms from Mw,a = 25 kg/mol to 300 kg/mol, and the backbone chains from Mw,b = 100 kg/mol to 382 kg/mol. If the length of the arm is shorter than the length of the backbone, i.e. Mw,a < Mw,b, and despite the vastly different topologies considered, the elongational stress growth coefficient can be modeled by the Hierarchical Multi-mode Molecular Stress Function (HMMSF) model, based exclusively on the linear-viscoelastic characterization and a single nonlinear parameter, the dilution modulus. If the length of the arms of the stars is similar or longer than the length of the backbone chain (Mw,a ≥ Mw,b) connecting two stars, the impact of the backbone chain on the rheology vanishes and the elongational stress growth coefficient is dominated by the star topology showing similar features of the elongational stress growth coefficient as those of linear polymers.

Graphical Abstract

Abstract Image

由线性骨架链连接的 2、3 和 4 聚合物星的拉伸流变性能
我们考虑了具有 2、3 和 4 个星形的聚苯乙烯拓扑模型的拉伸流变性,这些星形由一个(2-星形或 "Pom-Pom")、两个(3-星形)和三个(4-星形)线性骨架链连接。每颗星的星臂数量从 qa = 3 到 24 不等,星臂的分子量从 Mw,a = 25 千克/摩尔到 300 千克/摩尔不等,骨架链的分子量从 Mw,b = 100 千克/摩尔到 382 千克/摩尔不等。如果臂的长度短于骨架链的长度,即 Mw,a < Mw,b,尽管考虑的拓扑结构大不相同,但伸长应力增长系数可通过层次多模式分子应力函数(HMMSF)模型来模拟,该模型完全基于线性-粘弹性特征和单一非线性参数(稀释模量)。如果星形臂的长度与连接两个星形臂的主链长度(Mw,a ≥ Mw,b)相近或更长,则主链对流变学的影响消失,伸长应力增长系数由星形拓扑结构主导,显示出与线性聚合物类似的伸长应力增长系数特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信