Bin Wei, Lin Lin, Jian Zhang, Zhiwen Zhan, Ziwei Cheng, Junru Jiang
{"title":"In situ measurement techniques using diamond anvil cell at high pressure–temperature conditions: A review","authors":"Bin Wei, Lin Lin, Jian Zhang, Zhiwen Zhan, Ziwei Cheng, Junru Jiang","doi":"10.1002/pssr.202300469","DOIUrl":null,"url":null,"abstract":"Diamond anvil cells have garnered significant attention in high‐pressure studies as a valuable tool for investigating material preparation, phase transition dynamics, and ultra‐high‐pressure physical chemistry. Its potential applications span fields such as materials science, condensed matter physics, chemistry, and geology. This study conducted a comprehensive review of the utilization of laser‐heated diamond anvil cell devices in conjunction with in situ optical characterization techniques, such as X‐ray and Raman scattering. Further, diverse in situ performance measurement methods encompassing electrical, thermal, magnetic, and acoustic analyses were examined. The development and role of the prevailing in situ measurement techniques have been described, along with the current progress in applied research for each technique. This study aims to facilitate the discovery of new structures and properties of materials under high pressure–temperature conditions.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"46 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202300469","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diamond anvil cells have garnered significant attention in high‐pressure studies as a valuable tool for investigating material preparation, phase transition dynamics, and ultra‐high‐pressure physical chemistry. Its potential applications span fields such as materials science, condensed matter physics, chemistry, and geology. This study conducted a comprehensive review of the utilization of laser‐heated diamond anvil cell devices in conjunction with in situ optical characterization techniques, such as X‐ray and Raman scattering. Further, diverse in situ performance measurement methods encompassing electrical, thermal, magnetic, and acoustic analyses were examined. The development and role of the prevailing in situ measurement techniques have been described, along with the current progress in applied research for each technique. This study aims to facilitate the discovery of new structures and properties of materials under high pressure–temperature conditions.This article is protected by copyright. All rights reserved.
金刚石砧室作为研究材料制备、相变动力学和超高压物理化学的重要工具,在高压研究中备受关注。其潜在应用领域包括材料科学、凝聚态物理、化学和地质学。本研究全面回顾了激光加热金刚石砧单元设备与 X 射线和拉曼散射等原位光学表征技术的结合使用情况。此外,还研究了包括电学、热学、磁学和声学分析在内的各种原位性能测量方法。本研究介绍了常用原位测量技术的发展和作用,以及每种技术目前的应用研究进展。本研究旨在促进高压高温条件下材料新结构和新性能的发现。本文受版权保护。
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.