Extremal Graphs for the $$K_{1,2}$$ -Isolation Number of Graphs

IF 1 3区 数学 Q1 MATHEMATICS
Qing Cui, Jingshu Zhang, Lingping Zhong
{"title":"Extremal Graphs for the $$K_{1,2}$$ -Isolation Number of Graphs","authors":"Qing Cui, Jingshu Zhang, Lingping Zhong","doi":"10.1007/s40840-024-01711-6","DOIUrl":null,"url":null,"abstract":"<p>For any non-negative integer <i>k</i> and any graph <i>G</i>, a subset <span>\\(S\\subseteq V(G)\\)</span> is said to be a <span>\\(K_{1,k+1}\\)</span>-isolating set of <i>G</i> if <span>\\(G-N[S]\\)</span> does not contain <span>\\(K_{1,k+1}\\)</span> as a subgraph. The <span>\\(K_{1,k+1}\\)</span>-isolation number of <i>G</i>, denoted by <span>\\(\\iota _k(G)\\)</span>, is the minimum cardinality of a <span>\\(K_{1,k+1}\\)</span>-isolating set of <i>G</i>. Recently, Zhang and Wu (2021) proved that if <i>G</i> is a connected <i>n</i>-vertex graph and <span>\\(G\\notin \\{P_3,C_3,C_6\\}\\)</span>, then <span>\\(\\iota _1(G)\\le \\frac{2}{7}n\\)</span>. In this paper, we characterize all extremal graphs attaining this bound, which resolves a problem proposed by Zhang and Wu (Discrete Appl Math 304:365–374, 2021).</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"29 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01711-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any non-negative integer k and any graph G, a subset \(S\subseteq V(G)\) is said to be a \(K_{1,k+1}\)-isolating set of G if \(G-N[S]\) does not contain \(K_{1,k+1}\) as a subgraph. The \(K_{1,k+1}\)-isolation number of G, denoted by \(\iota _k(G)\), is the minimum cardinality of a \(K_{1,k+1}\)-isolating set of G. Recently, Zhang and Wu (2021) proved that if G is a connected n-vertex graph and \(G\notin \{P_3,C_3,C_6\}\), then \(\iota _1(G)\le \frac{2}{7}n\). In this paper, we characterize all extremal graphs attaining this bound, which resolves a problem proposed by Zhang and Wu (Discrete Appl Math 304:365–374, 2021).

Abstract Image

$$K_{1,2}$ -隔离数的极值图
对于任意非负整数k和任意图G,如果\(G-N[S]\)不包含作为子图的\(K_{1,k+1}\),那么子集\(S\subseteq V(G)\)被称为G的\(K_{1,k+1}\)隔离集。G 的隔离数用 \(\iota _k(G)\)表示,它是\(K_{1,k+1}\)-隔离集的最小卡片度。最近,Zhang 和 Wu(2021)证明了如果 G 是一个 n 个顶点的连通图,并且 \(G notin \{P_3,C_3,C_6}\), 那么 \(\iota _1(G)\le \frac{2}{7}n\).本文描述了所有达到此约束的极值图,解决了张和吴提出的问题(Discrete Appl Math 304:365-374, 2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信