Multiplicity of Normalized Solutions for Schrödinger Equations

IF 1 3区 数学 Q1 MATHEMATICS
Yan-Cheng Lv, Gui-Dong Li
{"title":"Multiplicity of Normalized Solutions for Schrödinger Equations","authors":"Yan-Cheng Lv, Gui-Dong Li","doi":"10.1007/s40840-024-01713-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following nonlinear Schrödinger equation with an <span>\\(L^2\\)</span>-constraint: </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u=\\lambda u+\\mu |u|^{q-2}u+|u|^{p-2}u \\ \\ \\ \\textrm{in}~\\mathbb {R}^{N}, \\\\ \\int _{\\mathbb {R}^{N}}|u|^{2}dx=a^2, \\ \\ u\\in H^1(\\mathbb {R}^{N}), \\end{array}\\right. }\\end{aligned}$$</span><p>where <span>\\(N\\ge 3\\)</span>, <span>\\(a,\\mu &gt;0\\)</span>, <span>\\(2&lt;q&lt;2+\\frac{4}{N}&lt;p&lt;2^*\\)</span>, <span>\\(2q+2N-pN&lt;0\\)</span> and <span>\\(\\lambda \\in \\mathbb {R}\\)</span> arises as a Lagrange multiplier. We deal with the concave and convex cases of energy functional constraints on the <span>\\(L^2\\)</span> sphere, and prove the existence of infinitely solutions with positive energy levels.\n</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01713-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following nonlinear Schrödinger equation with an \(L^2\)-constraint:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=\lambda u+\mu |u|^{q-2}u+|u|^{p-2}u \ \ \ \textrm{in}~\mathbb {R}^{N}, \\ \int _{\mathbb {R}^{N}}|u|^{2}dx=a^2, \ \ u\in H^1(\mathbb {R}^{N}), \end{array}\right. }\end{aligned}$$

where \(N\ge 3\), \(a,\mu >0\), \(2<q<2+\frac{4}{N}<p<2^*\), \(2q+2N-pN<0\) and \(\lambda \in \mathbb {R}\) arises as a Lagrange multiplier. We deal with the concave and convex cases of energy functional constraints on the \(L^2\) sphere, and prove the existence of infinitely solutions with positive energy levels.

Abstract Image

薛定谔方程归一化解的多重性
在本文中,我们考虑了以下具有(L^2\)约束条件的非线性薛定谔方程:$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=\lambda u+\mu |u|^{q-2}u+|u|^{p-2}u \\textrm{in}~\mathbb {R}^{N}、\int _{mathbb {R}^{N}}|u|^{2}dx=a^2, \ u\in H^1(\mathbb {R}^{N}), \end{array}\right.}end{aligned}$$ 其中(N\ge 3\),(a,\mu >0\),(2<q<2+frac{4}{N}<p<2^*\),(2q+2N-pN<0\)和(\lambda \in \mathbb {R}\)作为拉格朗日乘数出现。我们处理了能量函数约束在 \(L^2\) 球上的凹和凸情况,并证明了具有正能级的无限解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信