Gaussian Recombining Split Tree

Yury Lebedev, Arunava Banerjee
{"title":"Gaussian Recombining Split Tree","authors":"Yury Lebedev, Arunava Banerjee","doi":"arxiv-2405.16333","DOIUrl":null,"url":null,"abstract":"Binomial trees are widely used in the financial sector for valuing securities\nwith early exercise characteristics, such as American stock options. However,\nwhile effective in many scenarios, pricing options with CRR binomial trees are\nlimited. Major limitations are volatility estimation, constant volatility\nassumption, subjectivity in parameter choices, and impracticality of\ninstantaneous delta hedging. This paper presents a novel tree: Gaussian\nRecombining Split Tree (GRST), which is recombining and does not need\nlog-normality or normality market assumption. GRST generates a discrete\nprobability mass function of market data distribution, which approximates a\nGaussian distribution with known parameters at any chosen time interval. GRST\nMixture builds upon the GRST concept while being flexible to fit a large class\nof market distributions and when given a 1-D time series data and moments of\ndistributions at each time interval, fits a Gaussian mixture with the same\nmixture component probabilities applied at each time interval. Gaussian\nRecombining Split Tre Mixture comprises several GRST tied using Gaussian\nmixture component probabilities at the first node. Our extensive empirical\nanalysis shows that the option prices from the GRST align closely with the\nmarket.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Binomial trees are widely used in the financial sector for valuing securities with early exercise characteristics, such as American stock options. However, while effective in many scenarios, pricing options with CRR binomial trees are limited. Major limitations are volatility estimation, constant volatility assumption, subjectivity in parameter choices, and impracticality of instantaneous delta hedging. This paper presents a novel tree: Gaussian Recombining Split Tree (GRST), which is recombining and does not need log-normality or normality market assumption. GRST generates a discrete probability mass function of market data distribution, which approximates a Gaussian distribution with known parameters at any chosen time interval. GRST Mixture builds upon the GRST concept while being flexible to fit a large class of market distributions and when given a 1-D time series data and moments of distributions at each time interval, fits a Gaussian mixture with the same mixture component probabilities applied at each time interval. Gaussian Recombining Split Tre Mixture comprises several GRST tied using Gaussian mixture component probabilities at the first node. Our extensive empirical analysis shows that the option prices from the GRST align closely with the market.
高斯重组分裂树
二叉树在金融领域被广泛用于评估具有提前行使特征的证券,如美式股票期权。然而,虽然在许多情况下都很有效,但用 CRR 二叉树为期权定价还是有局限性的。主要限制在于波动率估计、恒定波动率假设、参数选择的主观性以及瞬时三角对冲的不实用性。本文提出了一种新型树:高斯重组分裂树(GRST),它是重组树,不需要逻辑正态性或正态市场假设。GRST 可生成市场数据分布的离散概率质量函数,该函数近似于高斯分布,在任何选定的时间间隔内均具有已知参数。GRSTMixture 建立在 GRST 概念的基础上,可灵活拟合一大类市场分布,当给定一维时间序列数据和每个时间间隔的分布矩时,可拟合出一个高斯混合物,在每个时间间隔应用相同的混合物分量概率。高斯重组分裂混合物由多个 GRST 连接组成,在第一个节点使用高斯混合物成分概率。我们广泛的实证分析表明,GRST 得出的期权价格与市场密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信