Lightweight design of a steering power cylinder bracket

IF 2.1 4区 工程技术
Baoshan Shen
{"title":"Lightweight design of a steering power cylinder bracket","authors":"Baoshan Shen","doi":"10.1177/16878132241246670","DOIUrl":null,"url":null,"abstract":"As for lightweight design of components, the multi-body dynamics analysis was conducted on the hydraulic power steering system with double front axles, and the load spectrum of the Steering Power Cylinder Bracket (SPCB) under typical working conditions was worked out. Then, the nonlinear strength calculation and topology optimization analysis of the bracket were carried out. According to the optimization results, the eight schemes were designed and the optimal one was selected according to the results of static strength calculation. Then the optimal scheme was subject to the analysis on fatigue strength. Finally, it was verified that the optimized structure was effective by means of the vehicle durability test. The results show that the weight of the SPCB is reduced by about 2.53 kg (the lightweight ratio of 43.2%) when such performance as stiffness and strength are greatly improved compared with that of original scheme. The lightweight effect is obvious and the optimization process can guide the lightweight design of similar parts.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"62 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241246670","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As for lightweight design of components, the multi-body dynamics analysis was conducted on the hydraulic power steering system with double front axles, and the load spectrum of the Steering Power Cylinder Bracket (SPCB) under typical working conditions was worked out. Then, the nonlinear strength calculation and topology optimization analysis of the bracket were carried out. According to the optimization results, the eight schemes were designed and the optimal one was selected according to the results of static strength calculation. Then the optimal scheme was subject to the analysis on fatigue strength. Finally, it was verified that the optimized structure was effective by means of the vehicle durability test. The results show that the weight of the SPCB is reduced by about 2.53 kg (the lightweight ratio of 43.2%) when such performance as stiffness and strength are greatly improved compared with that of original scheme. The lightweight effect is obvious and the optimization process can guide the lightweight design of similar parts.
转向助力缸支架的轻量化设计
在部件轻量化设计方面,对双前轴液压助力转向系统进行了多体动力学分析,得出了转向助力缸支架(SPCB)在典型工况下的载荷谱。然后,对支架进行了非线性强度计算和拓扑优化分析。根据优化结果,设计了八种方案,并根据静态强度计算结果选择了最优方案。然后,对最优方案进行疲劳强度分析。最后,通过车辆耐久性试验验证了优化结构的有效性。结果表明,与原始方案相比,在刚度和强度等性能大幅提高的情况下,SPCB 的重量减轻了约 2.53 千克(轻量化率为 43.2%)。轻量化效果明显,优化过程可指导同类零件的轻量化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信