Water-assisted ketonization of methyl palmitate to palmitone over metal incorporated TiO2 catalysts†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jetsadagorn Pittayatornkul, Tosapol Maluangnont, Siriporn Jongpatiwut, Piyasan Praserthdam, Makoto Ogawa and Tawan Sooknoi
{"title":"Water-assisted ketonization of methyl palmitate to palmitone over metal incorporated TiO2 catalysts†","authors":"Jetsadagorn Pittayatornkul, Tosapol Maluangnont, Siriporn Jongpatiwut, Piyasan Praserthdam, Makoto Ogawa and Tawan Sooknoi","doi":"10.1039/D4RE00111G","DOIUrl":null,"url":null,"abstract":"<p >Ketonization of methyl palmitate to palmitone, a bio-lube precursor, was investigated over noble metal (Pt, Ru, and Pd) incorporated TiO<small><sub>2</sub></small> catalysts in the presence of water under an atmospheric H<small><sub>2</sub></small>/N<small><sub>2</sub></small> flow. Methyl palmitate underwent hydrolysis to palmitic acid that ketonized to palmitone over Lewis Ti<small><sup>3+</sup></small> sites. The water co-feeding also suppressed hydrodeoxygenation of methyl palmitate and palmitone cracking leading to high palmitone selectivity. The incorporated metals facilitated H<small><sub>2</sub></small> dissociation/spillover on TiO<small><sub>2</sub></small> which generated more Lewis Ti<small><sup>3+</sup></small> sites for higher ketonization activity. At 400 °C, 0.5Pd/TiO<small><sub>2</sub></small> provided ∼90% conversion with &gt;85% palmitone selectivity and &gt;25 h stability, due to its efficient H<small><sub>2</sub></small> dissociation/spillover to continually recover Lewis Ti<small><sup>3+</sup></small> sites. Meanwhile 0.5Pt/TiO<small><sub>2</sub></small> promoted excessive hydrodeoxygenation, leading to the deactivation from CO poisoning at the metallic Pt sites. The findings of this study offer a sustainable approach for the selective production of bio-lube precursors from renewable fatty acid methyl esters.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2345-2357"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00111g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ketonization of methyl palmitate to palmitone, a bio-lube precursor, was investigated over noble metal (Pt, Ru, and Pd) incorporated TiO2 catalysts in the presence of water under an atmospheric H2/N2 flow. Methyl palmitate underwent hydrolysis to palmitic acid that ketonized to palmitone over Lewis Ti3+ sites. The water co-feeding also suppressed hydrodeoxygenation of methyl palmitate and palmitone cracking leading to high palmitone selectivity. The incorporated metals facilitated H2 dissociation/spillover on TiO2 which generated more Lewis Ti3+ sites for higher ketonization activity. At 400 °C, 0.5Pd/TiO2 provided ∼90% conversion with >85% palmitone selectivity and >25 h stability, due to its efficient H2 dissociation/spillover to continually recover Lewis Ti3+ sites. Meanwhile 0.5Pt/TiO2 promoted excessive hydrodeoxygenation, leading to the deactivation from CO poisoning at the metallic Pt sites. The findings of this study offer a sustainable approach for the selective production of bio-lube precursors from renewable fatty acid methyl esters.

Abstract Image

在掺入金属的 TiO2 催化剂上水助酮化棕榈酸甲酯生成棕榈酮
研究了在大气 H2/N2 流动条件下,在含有贵金属(铂、钌和钯)的二氧化钛催化剂上将棕榈酸甲酯酮化为棕榈酮(一种生物润滑油前体)的过程。棕榈酸甲酯水解为棕榈酸,棕榈酸在路易斯 Ti3+ 位点上酮化为棕榈酮。水的共同作用还抑制了棕榈酸甲酯的加氢脱氧和棕榈酮的裂解,从而实现了较高的棕榈酮选择性。加入的金属促进了二氧化钛上的 H2 解离/溢出,从而产生了更多的 Lewis Ti3+ 位点,提高了酮化活性。在 400 ˚C,0.5Pd/TiO2 的转化率约为 90%,棕榈酮选择性为 85%,稳定性为 25 小时。而 0.5Pt/TiO2 则促进了过度的氢脱氧,导致金属铂位点因 CO 中毒而失活。本研究的结果为从可再生脂肪酸甲酯中选择性生产生物润滑油前体提供了一种可持续的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信