Game Derandomization

Samuel Epstein
{"title":"Game Derandomization","authors":"Samuel Epstein","doi":"arxiv-2405.16353","DOIUrl":null,"url":null,"abstract":"Using Kolmogorov Game Derandomization, upper bounds of the Kolmogorov\ncomplexity of deterministic winning players against deterministic environments\ncan be proved. This paper gives improved upper bounds of the Kolmogorov\ncomplexity of such players. This paper also generalizes this result to\nprobabilistic games. This applies to computable, lower computable, and\nuncomputable environments. We characterize the classic even-odds game and then\ngeneralize these results to time bounded players and also to all zero-sum\nrepeated games. We characterize partial game derandomization. But first, we\nstart with an illustrative example of game derandomization, taking place on the\nisland of Crete.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using Kolmogorov Game Derandomization, upper bounds of the Kolmogorov complexity of deterministic winning players against deterministic environments can be proved. This paper gives improved upper bounds of the Kolmogorov complexity of such players. This paper also generalizes this result to probabilistic games. This applies to computable, lower computable, and uncomputable environments. We characterize the classic even-odds game and then generalize these results to time bounded players and also to all zero-sum repeated games. We characterize partial game derandomization. But first, we start with an illustrative example of game derandomization, taking place on the island of Crete.
游戏去随机化
利用柯尔莫哥洛夫博弈去随机化,可以证明确定性胜者在确定性环境下的柯尔莫哥洛夫复杂度上限。本文给出了这类棋手的柯尔莫哥洛夫复杂度的改进上界。本文还将这一结果推广到了概率博弈。这适用于可计算、低可计算和不可计算的环境。我们描述了经典偶数博弈的特征,并将这些结果推广到有时间限制的玩家以及所有零和重复博弈。我们描述了部分博弈去随机化的特征。首先,我们以克里特岛上发生的博弈去随机化为例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信