Complexity of Multiple-Hamiltonicity in Graphs of Bounded Degree

Brian Liu, Nathan S. Sheffield, Alek Westover
{"title":"Complexity of Multiple-Hamiltonicity in Graphs of Bounded Degree","authors":"Brian Liu, Nathan S. Sheffield, Alek Westover","doi":"arxiv-2405.16270","DOIUrl":null,"url":null,"abstract":"We study the following generalization of the Hamiltonian cycle problem: Given\nintegers $a,b$ and graph $G$, does there exist a closed walk in $G$ that visits\nevery vertex at least $a$ times and at most $b$ times? Equivalently, does there\nexist a connected $[2a,2b]$ factor of $2b \\cdot G$ with all degrees even? This\nproblem is NP-hard for any constants $1 \\leq a \\leq b$. However, the graphs\nproduced by known reductions have maximum degree growing linearly in $b$. The\ncase $a = b = 1 $ -- i.e. Hamiltonicity -- remains NP-hard even in $3$-regular\ngraphs; a natural question is whether this is true for other $a$, $b$. In this work, we study which $a, b$ permit polynomial time algorithms and\nwhich lead to NP-hardness in graphs with constrained degrees. We give tight\ncharacterizations for regular graphs and graphs of bounded max-degree, both\ndirected and undirected.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following generalization of the Hamiltonian cycle problem: Given integers $a,b$ and graph $G$, does there exist a closed walk in $G$ that visits every vertex at least $a$ times and at most $b$ times? Equivalently, does there exist a connected $[2a,2b]$ factor of $2b \cdot G$ with all degrees even? This problem is NP-hard for any constants $1 \leq a \leq b$. However, the graphs produced by known reductions have maximum degree growing linearly in $b$. The case $a = b = 1 $ -- i.e. Hamiltonicity -- remains NP-hard even in $3$-regular graphs; a natural question is whether this is true for other $a$, $b$. In this work, we study which $a, b$ permit polynomial time algorithms and which lead to NP-hardness in graphs with constrained degrees. We give tight characterizations for regular graphs and graphs of bounded max-degree, both directed and undirected.
有界度图中多重哈密顿性的复杂性
我们研究的是汉密尔顿循环问题的以下一般化:给定整数$a,b$和图$G$,在$G$中是否存在一个闭合行走,它访问每个顶点至少$a$次,最多$b$次?等价地,是否存在2b \cdot G$ 的一个连通的$[2a,2b]$因子,且所有度数为偶数?对于任何常数 $1 \leq a \leq b$ 来说,这个问题都是 NP 难的。然而,已知还原生成的图的最大度数与 $b$ 成线性增长。即使在 3 美元的规则图中,$a = b = 1 的情况--即哈密顿性--仍然是 NP 难的;一个自然的问题是,对于其他的 $a$、$b$,情况是否也是如此。在这项工作中,我们研究了哪些 $a、b$ 允许使用多项式时间算法,以及哪些算法在有约束度的图中会导致 NP-困难。我们给出了规则图和有界最大度图(包括有向和无向图)的严密特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信