The Radical Solution and Computational Complexity

Bojin Zheng, Weiwu Wang
{"title":"The Radical Solution and Computational Complexity","authors":"Bojin Zheng, Weiwu Wang","doi":"arxiv-2405.15790","DOIUrl":null,"url":null,"abstract":"The radical solution of polynomials with rational coefficients is a famous\nsolved problem. This paper found that it is a $\\mathbb{NP}$ problem.\nFurthermore, this paper found that arbitrary $ \\mathscr{P} \\in \\mathbb{P}$\nshall have a one-way running graph $G$, and have a corresponding $\\mathscr{Q}\n\\in \\mathbb{NP}$ which have a two-way running graph $G'$, $G$ and $G'$ is\nisomorphic, i.e., $G'$ is combined by $G$ and its reverse $G^{-1}$. When\n$\\mathscr{P}$ is an algorithm for solving polynomials, $G^{-1}$ is the radical\nformula. According to Galois' Theory, a general radical formula does not exist.\nTherefore, there exists an $\\mathbb{NP}$, which does not have a general,\ndeterministic and polynomial time-complexity algorithm, i.e., $\\mathbb{P} \\neq\n\\mathbb{NP}$. Moreover, this paper pointed out that this theorem actually is an\nimpossible trinity.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The radical solution of polynomials with rational coefficients is a famous solved problem. This paper found that it is a $\mathbb{NP}$ problem. Furthermore, this paper found that arbitrary $ \mathscr{P} \in \mathbb{P}$ shall have a one-way running graph $G$, and have a corresponding $\mathscr{Q} \in \mathbb{NP}$ which have a two-way running graph $G'$, $G$ and $G'$ is isomorphic, i.e., $G'$ is combined by $G$ and its reverse $G^{-1}$. When $\mathscr{P}$ is an algorithm for solving polynomials, $G^{-1}$ is the radical formula. According to Galois' Theory, a general radical formula does not exist. Therefore, there exists an $\mathbb{NP}$, which does not have a general, deterministic and polynomial time-complexity algorithm, i.e., $\mathbb{P} \neq \mathbb{NP}$. Moreover, this paper pointed out that this theorem actually is an impossible trinity.
激进解决方案与计算复杂性
有理系数多项式的根解是一个著名的问题。本文发现这是一个 $\mathbb{NP}$ 问题。此外,本文发现任意 $\mathscr{P}\中都有一个单向运行图 $G$,并且在 \mathbb{NP}$ 中有一个相应的 $mathscr{Q}\ ,它有一个双向运行图 $G'$,$G$ 和 $G'$ 是同构的,即 $G'$ 由 $G$ 和它的反向 $G^{-1}$ 组合而成。当$mathscr{P}$是求解多项式的算法时,$G^{-1}$就是基式。根据伽罗瓦理论,一般的基式是不存在的。因此,存在一个$\mathbb{NP}$,它没有一般的、确定的和多项式时间复杂度的算法,即$\mathbb{P}。\$neq\mathbb{NP}$。此外,本文还指出该定理实际上是三位一体的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信