The Parabolic U(1)-Higgs Equations and Codimension-Two Mean Curvature Flows

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Davide Parise, Alessandro Pigati, Daniel Stern
{"title":"The Parabolic U(1)-Higgs Equations and Codimension-Two Mean Curvature Flows","authors":"Davide Parise, Alessandro Pigati, Daniel Stern","doi":"10.1007/s00039-024-00684-9","DOIUrl":null,"url":null,"abstract":"<p>We develop the asymptotic analysis as <i>ε</i>→0 for the natural gradient flow of the self-dual <i>U</i>(1)-Higgs energies </p><span>$$ E_{\\varepsilon }(u,\\nabla )=\\int _{M}\\left (|\\nabla u|^{2}+ \\varepsilon ^{2}|F_{\\nabla }|^{2}+ \\frac{(1-|u|^{2})^{2}}{4\\varepsilon ^{2}}\\right ) $$</span><p> on Hermitian line bundles over closed manifolds (<i>M</i><sup><i>n</i></sup>,<i>g</i>) of dimension <i>n</i>≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (<i>n</i>−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (<i>n</i>−2)-cycle Γ<sub>0</sub> in <i>M</i>, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual <i>U</i>(1)-Yang–Mills–Higgs energies to the (<i>n</i>−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ<sub>0</sub> with additional structure, similar to those produced via Ilmanen’s elliptic regularization.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00684-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the asymptotic analysis as ε→0 for the natural gradient flow of the self-dual U(1)-Higgs energies

$$ E_{\varepsilon }(u,\nabla )=\int _{M}\left (|\nabla u|^{2}+ \varepsilon ^{2}|F_{\nabla }|^{2}+ \frac{(1-|u|^{2})^{2}}{4\varepsilon ^{2}}\right ) $$

on Hermitian line bundles over closed manifolds (Mn,g) of dimension n≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (n−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (n−2)-cycle Γ0 in M, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the (n−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ0 with additional structure, similar to those produced via Ilmanen’s elliptic regularization.

Abstract Image

抛物线 U(1)-Higgs 方程与二维平均曲率流
我们对自双 U(1)-Higgs 能量的自然梯度流 $$ E_{\varepsilon }(u.)进行了 ε→0 的渐近分析、\nabla )=\int _{M}\left (|\nabla u|^{2}+ \varepsilon ^{2}|F_{\nabla }|^{2}+ \frac{(1-|u|^{2})^{2}}{4\varepsilon ^{2}}\right ) $$ 在封闭流形(Mn、g) 上的赫米线束上的 $$,表明解在度量理论意义上收敛于编码维数为 2 的平均曲率流--即.e.,223:1027-1095, 2021)的结果。给定 M 中的任何积分(n-2)循环Γ0,这些结果可以与(Parise 等人在《自双 U(1)-Yang-Mills-Higgs 能量向(n-2)面积函数的收敛》中,2021 年,arXiv:2103.14615)中发展的收敛理论一起使用,以产生从Γ0 开始的具有额外结构的非难积分布拉克流,类似于通过伊尔马宁的椭圆正则化产生的布拉克流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信